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• A vertex similarity index CosRA is proposed, which combines both advantages of cosine index and resource-allocation index.
• Results on real rating data suggest the overall better performance of CosRA-based recommendation method.
• Further experiments show that CosRA index is parameter-free with a significant advantage in real applications.
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a b s t r a c t

Recommender systems benefit us in tackling the problem of information overload
by predicting our potential choices among diverse niche objects. So far, a variety of
personalized recommendation algorithms have been proposed andmost of them are based
on similarities, such as collaborative filtering and mass diffusion. Here, we propose a novel
vertex similarity index named CosRA, which combines advantages of both the cosine index
and the resource-allocation (RA) index. By applying the CosRA index to real recommender
systems including MovieLens, Netflix and RYM, we show that the CosRA-based method
has better performance in accuracy, diversity and novelty than some benchmark methods.
Moreover, the CosRA index is free of parameters, which is a significant advantage in real
applications. Further experiments show that the introduction of two turnable parameters
cannot remarkably improve the overall performance of the CosRA index.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The development of the Internet and e-commerce makes our lives more convenient as billions of products are available
online [1]. Meanwhile, the problem of information overload plagues us everyday as it is much harder to dig out relevant
objects than ever [2]. Thus far, personalized recommendation was thought to be the most promising way to efficiently
solve the problem of information overload [3,4]. Personalized recommendation benefits both buyers and sellers, and it is
now playing an increasing role in our online social lives. Many online platforms (Amazon, eBay, AdaptiveInfo, Taobao, etc.)
have introduced personalized recommendation systems [5], which predict users’ potential choices by analyzing historical
behaviors of users, attributes of objects, and so on [6]. For example, Amazon.com recommends books by analyzing users’
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purchase records [7], and AdaptiveInfo.com recommends news by using users’ reading histories [8]. In recent years,
personalized recommendation has found wide applications [9] in recommending movies [10,11], videos [12], research
articles [13], driving routes [14], locations [15,16] and so on.

So far, a variety of personalized recommendation algorithms have been proposed [17–21], among which user-based
(UCF) and item-based collaborative filtering (ICF) are the most representative ones [22]. UCF and ICF are respectively based
on the weighted combination of similar users’ opinions and the similarity between items [23]. Recently, many diffusion-
based algorithms are proposed by introducing some physical dynamics into the recommender systems, such as mass
diffusion (MD) [24] and heat conduction (HC) [25]. The simplest version of MD can be considered as a two-step resource-
allocation process in bipartite networks [26]. Later, Zhou et al. [27] and Jia et al. [28] proposed two algorithms by giving
new strategies in the initial resource distribution, Zhou et al. [29] proposed a hybrid method that combines both MD and
HC, Lü et al. [30] proposed a preferential diffusion method by considering node weights in redistributing resources, and Liu
et al. [31] proposed a weighted heat conduction algorithm by considering edge weighting. Reviews of previous literatures
can be found in Refs. [17,18].

Essentially, the aforementioned collaborative filtering and diffusion-based methods are based on similarities [32,33]. In
collaborative filtering, themost commonly used index is cosine similarity [34–36]. However, it strongly tends to recommend
popular objects, resulting in accurate yet less-diverse recommendations [37]. In diffusion-based methods, the diffusion is
indeed a resource-allocation process, and the node similarity is characterized by the resource-allocation (RA) index [38,39].
The RA index gives high priority to assign resources to large-degree nodes, which leads to high accuracy but low diversity of
MD [40]. In fact, the cosine index and RA index are complementary to each other, and thus to combine the two can possibly
improve the overall performance. How to design a suitable similarity index for better recommendation is still an open issue
and such index can be applied in characterizing many network structures and functions [41,42].

In this paper, we propose a vertex similarity index, named CosRA, for better personalized recommendation. Based on
the CosRA index which combines advantages of both the cosine index and the RA index, we further propose a personalized
recommendation algorithm. Extensive experiments on four real data sets suggest that the CosRA-based method performs
better in accuracy, diversity and novelty than some benchmark methods. Moreover, we provide some insights on the
mechanism of the CosRA index and extend it to a more general form by introducing two turnable parameters. Interestingly,
results suggest that the original CosRA index is almost optimal, and its effectiveness cannot be remarkably improved by
adjusting the parameters. Such feature is significant since a parameter-free index is more applicable than a parameter-
dependent index. Our work sheds lights on the importance of a suitable vertex similarity index in enhancing the overall
performance of personalized recommendation.

2. Vertex similarity index

A recommender system can be naturally described by a user–object bipartite network G(U,O, E), where U =

{u1, u2, . . . , um},O = {o1, o2, . . . , on} and E = {e1, e2, . . . , ez} are sets of users, objects and links, respectively. To distinguish
object-related and user-related indices, we respectively use Greek and Latin letters for them. Meanwhile, the bipartite
network G(U,O, E) can be naturally represented by an adjacency matrix A, whose element aiα = 1 if there is a link
connecting node Ui and node Oα , i.e., user i has collected object α, otherwise aiα = 0. The main purpose of recommendation
algorithms is to provide a target user with a ranking list of his uncollected objects. For user i, the recommendation list with
length L is denoted as oLi . That is to say, oLi is a set of L objects with the highest recommendation scores for user i.

First, we introduce two widely used similarity indices in recommendation algorithms, namely, the cosine index and the
RA index. Taking two objects α and β as an example, the cosine index between them is defined as

SCosαβ =
1
kαkβ

m
i=1

aiαaiβ , (1)

where kα and kβ are the degrees of objects α and β , respectively. In fact, the cosine index measures the similarity between
two objects’ rating vectors of an inner product space. Meanwhile, the resource-allocation process is equivalent to the one-
step randomwalk in the user–object bipartite network starting from the common neighbors [39]. Specifically, the RA index
between two objects α and β is defined as

SRAαβ =

m
i=1

aiαaiβ
ki

, (2)

where ki is the degree of user i. Indeed, the RA index is the entry of the transformation matrix in the simplest version of the
MD process [26], which is a variant on an earlier version of the probabilistic spreading algorithm [29].

Then, we introduce the proposed CosRA similarity index. On the one side, both of the degrees of the two objects should
be considered, and the effect of popular objects should be restricted in calculating the similarity. On the other side, the effect
of small-degree users should be enhanced to decrease the advantage of large-degree nodes in the network. Based on these
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Fig. 1. Illustration of the proposed CosRA-based method. (a) Initially, for a target user (colored black), the resource of each object is initialized by Eq. (4).
(b) Then, objects distribute the resources to all the users who have collected them. (c) Finally, all users redistribute the resources to the objects that they
have collected. The processes in panels (b) and (c) can be characterized by Eq. (5).

two considerations, the CosRA index is proposed by combining both the cosine index and the RA index. Specifically, for two
objects α and β , the CosRA index is defined as

SCosRAαβ =
1
kαkβ

m
i=1

aiαaiβ
ki

. (3)

where ki is the degree of user i, kα is the degree of object α, and kβ is the degree of object β . Actually, SCosRAαβ measures the
similarity between objects α and β by summing their contribution from all two-step paths considering the degrees of both
types of nodes in bipartite networks.

Further, we propose a personalized recommendation algorithm based on the CosRA index. Specifically, the proposed
CosRA-based method works as follows: Firstly, for user i, the resource of object α is initialized as

f (i)
α = aiα, (4)

where aiα = 1 if user i has collected object α, otherwise aiα = 0. Secondly, the resources of all objects are redistributed via
the transformation

f ′(i)
= SCosRAf (i), (5)

where f (i) is an n-dimensional vector recording all objects’ initial resources given the target user i, and f ′(i) is the vector
recording all the final resources that located on each object. Finally, all objects are sorted by their final resources f ′(i), and
then the top-L uncollected objects are recommended to user i. An illustration of the CosRA-based method is shown in Fig. 1.

3. Data and evaluation

3.1. Data descriptions

Four commonly studied real data sets, namely, MovieLens-100K, MovieLens-1M, Netflix and RYM, are used to test the
performance of different methods. MovieLens data set is provided by the GroupLens project at University of Minnesota.1
The data set uses a 5-point rating scale from 1 to 5 (i.e., worst to best). When building bipartite networks, we only consider
the linkswith ratings≥3. After coarse graining, the smaller data set contains 82520 links and the larger one contains 836478
links. Netflix data set is released by theDVD rental companyNetflix for its Netflix Prize contest inNetflix.com.2 The ratings are
also given on a 5-point scale. Analogously, only linkswith ratings≥3 are reserved. Then,we extract a small sampling data set
by randomly choosing 10000 users and taking the associated 701947 links. RYM data set is publicly available on the music
ratings website RateYourMusic.com.3 The ratings are given on a 10-point scale from 1 to 10 (i.e., worst to best). Here, only
links with ratings ≥6 are considered, and thus the final data contains 609792 links. Note that, the bipartite networks in the
following analysis are unweighted with rating values being neglected. The basic statistics of the data sets are summarized
in Table 1.

3.2. Metrics for evaluation

In order to estimate how accurately the recommendation algorithms will perform in practice, the cross-validation is
usually used for assessing how the results will generalize to an independent data set [43]. One round of cross-validation
involves partitioning a sample of data into complementary subsets, performing the analysis on one subset (namely, training

1 http://www.grouplens.org.
2 http://www.netflixprize.com.
3 http://www.rateyourmusic.com.

http://www.grouplens.org
http://www.netflixprize.com
http://www.rateyourmusic.com
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Table 1
Basic statistics of the four real online rating data sets.

Data Users Objects Links Sparsity

MovieLens-100K 943 1574 82520 5.56 × 10−2

MovieLens-1M 6039 3628 836478 3.82 × 10−2

Netflix 10000 5640 701947 1.24 × 10−2

RYM 33197 5234 609792 3.51 × 10−3

set), and validating the analysis on the other subset (namely, testing set). In the following experiments, we use a 10-folder
cross-validation strategy to evaluate the performance of recommendation in each independent realization. Specifically, all
the ratings of users (i.e., links in bipartite networks) are randomly split into 10 equal sized subsamples, independent of users
and objects. Then, of the 10 subsamples, one subsample is retained for testing the recommendation performance, and the
remaining 9 subsamples are combined and used as the training set for recommendation. In another word, 90% of the whole
data sets are used for recommendation and the other 10% are used for evaluation. In this way, the 10-folder cross-validation
process is repeated 10 times, with each of the 10 subsamples used exactly once as testing data. Finally, all the 10 results are
averaged to produce one single result for this realization.

Evaluation metrics about the recommendation performance have been widely investigated in previous literatures
[26,44]. In this paper, we apply seven widely used metrics to quantify the performance of recommender systems, including
four accuracymetrics (AUC, MAP, Precision and Recall), two diversitymetrics (Inter-similarity and Intra-similarity), and one
novelty metric (Popularity). In the following, we will briefly introduce these metrics.

Accuracy is one of themost importantmetric in evaluating the quality of recommendation algorithms.We first introduce
AUC (area under the ROC curve) [45]. Given the ranks of objects in the testing set, AUC value can be interpreted as the
probability that a randomly chosen collected object is ranked higher than a randomly chosen un-collected object. To
calculate AUC, at each time, a pair of collected and un-collected objects is selected to compare their resources. After N
times independent comparisons, if there are N1 times the collected object has more resources and N2 times their resources
are the same, the average value of AUC for all users is defined as [39]

AUC =
1
m

m
i=1

(N1 + 0.5N2)

N
. (6)

Larger AUC value means higher algorithmic accuracy.
Then we introduce three L-dependent accuracy metrics, namely, MAP (Mean Average Precision) [46], Precision and

Recall [47]. MAP is a standard rank-aware measure of the overall ranking accuracy in the field of information retrieval,
which is similar to the average ranking score [26,44]. The average precision for user i is defined as

P̄i(L) =
1

D(i)

di(L)
s=1

s
rs

, (7)

where D(i) is the number of objects in the testing set, di(L) is the number of common objects in the testing set and the
recommendation list with length L, and rs ∈ [1, L] is the rank of sth common object in the recommendation list. Then, the
MAP index is calculated by averaging P̄i(L) for all users via

MAP =
1
m

m
i=1

P̄i(L), (8)

where m is the number of users. Larger MAP index corresponds to better overall ranking accuracy. Precision is defined as
the ratio of the number of recommended objects appeared in the testing set to the total number of recommended objects.
Mathematically, for all users, the average value of Precision is defined as

P(L) =
1
m

m
i=1

di(L)
L

. (9)

Recall is defined as the ratio of the number of recommended objects appeared in user’s recommendation list to the total
number of objects in the test set. Mathematically, for all users, the average value of Recall is defined as

R(L) =
1
m

m
i=1

di(L)
D(i)

. (10)

Larger Precision and Recall mean higher accuracy of the recommendation.
Diversity is an important metric in evaluating the variety of objects that are recommended by personalized

recommendation algorithms. As it is hard to obtain the external sources of the object similarity information, the diversity
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measures are usually based on the rating matrix. One of the commonly used diversity metrics is Inter-similarity, which can
be quantified by Hamming distance [27]. The average value of Hamming distance for all users is defined as

H(L) =
1

m(m − 1)

m
i=1

m
j=1


1 −

C(i, j)
L


, (11)

where C(i, j) = |oLi ∩ oLj | is the number of common objects in user i’s and j’s recommendation lists. Larger value of
Hamming distance corresponds to higher diversity. Another diversity metric is Intra-similarity [48], which is measured
by the cosine similarity between objects appeared in target user’s recommendation list. Mathematically, the average value
of Intra-similarity for all users is defined as

I(L) =
1

mL(L − 1)

m
i=1


oα ,oβ∈oLi ,α≠β

SCosαβ , (12)

where SCosαβ is the cosine similarity between objects α and β in user i’s recommendation list oLi with length L. Actually, the
Intra-similarity index has been widely used in recommendation performance evaluation [49,50]. Smaller value of Intra-
similarity means higher diversity of the recommendation.

Novelty [17] is an important metric aiming to quantify the ability of an algorithm to generate novel (i.e., unpopular)
and unexpected results. Here, we use the average Popularity of the recommended objects to quantify the novelty, which is
defined as

N(L) =
1
mL

m
i=1


oα∈oLi

kα, (13)

where kα is the degree of object α in user i’s recommendation list oLi . Smaller value of Popularity indicates higher novelty
and potentially better user experience.

4. Experiments and results

4.1. Performance of recommendation

We apply the CosRA-basedmethod to the four real online rating data sets. By comparison, some benchmarkmethods are
also considered, including global ranking (GR), user-based collaborative filtering (UCF), item-based collaborative filtering
(ICF), mass diffusion (MD) and heat conduction (HC). In GR, all objects are sorted in the descending order of their degrees
and those with the largest degrees are recommended [26]. In UCF, the target user will be recommended objects collected
by the users sharing similar tastes [51]. Analogously, in ICF, the target user will be recommended objects similar to the ones
that he preferred in the past [48]. We adopt the cosine similarity to quantify the user and object similarity in UCF and ICF,
respectively. MD and HC both can be considered as resource-allocation processes on the user–object bipartite networks
[29,38]. Nevertheless, they have several distinguishing characteristics. The total amount of resources is conserved in MD
instead of in HC. The transformationmatrices in MD and HC are mutually transposed as the matrix is normalized by column
in MD and by row in HC. Details of implementing the five benchmark methods can be found in the survey paper [17].

Results of the seven evaluation metrics are shown in Table 2. When focusing on the accuracy, CosRA-based method has
the best performance on all the four data sets, as indicated by the highest values of AUC, Precision and Recall. The AUC
values for the CosRA-based method are 0.908, 0.895, 0.950 and 0.952 for MovieLens- 100K, MovieLens- 1M, Netflix and RYM,
respectively. Although the CosRA-basedmethod is slightly inferior to ICF as evaluated by theMean Average Precision index,
it has remarkable advantage towards the other fourmethods. GR andHChave poor performance as indicated by the generally
smaller values of accuracymetrics, especially in Precision and Recall.When focusing on diversity, on the one hand, the values
of Inter-similarity (Hamming distance) for the CosRA-based method are much larger than those in GR, UCF and MD and not
far behind those in ICF and HC. On the other hand, the values of Intra-similarity for the CosRA-based method are smaller
than those in GR, UCF and MD. These results suggest that the CosRA-based method has advantage in diversity although it
is a little inferior to HC as evaluated by Inter-similarity and Intra-similarity. When focusing on novelty, the CosRA-based
method remarkably outperforms GR, UCF and MD as indicated by the smaller values of Popularity, although ICF and HC
perform best again. Indeed, it is challenging to solve the accuracy-diversity dilemma in recommender systems. Based on
these observations, it can be concluded that the CosRA-basedmethod has overall better accuracy, well diversity and novelty
in personalized recommendation.

4.2. Analysis of mechanisms

To better understand themechanism of the CosRA-basedmethod, we show the degree distributions of the recommended
objects for all users in Fig. 2. To make a comparison, MD and HC are also studied. In MD, there is a high probability for
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Table 2
Values of the six evaluation metrics after applying different recommendation algorithms on the four data sets. The length of recommendation list is set as
L = 50. The results are averaged over 10 independent realizations. For each data set and each evaluation metric, the best result is emphasized by bold.

MovieLens-100K AUC MAP P R H I N

GR 0.863 0.208 0.058 0.358 0.395 0.408 255
UCF 0.887 0.315 0.070 0.476 0.550 0.394 242
ICF 0.888 0.385 0.073 0.494 0.674 0.413 211
MD 0.898 0.325 0.075 0.527 0.618 0.355 230
HC 0.842 0.037 0.021 0.123 0.858 0.056 23
CosRA 0.908 0.380 0.082 0.575 0.724 0.335 204

MovieLens-1M AUC MAP P R H I N

GR 0.856 0.144 0.053 0.222 0.403 0.415 1660
UCF 0.872 0.176 0.061 0.263 0.458 0.415 1640
ICF 0.885 0.289 0.072 0.314 0.629 0.404 1445
MD 0.885 0.188 0.066 0.297 0.504 0.403 1618
HC 0.881 0.052 0.034 0.162 0.861 0.045 198
CosRA 0.895 0.223 0.074 0.350 0.598 0.387 1541

Netflix AUC MAP P R H I N

GR 0.933 0.161 0.043 0.370 0.356 0.374 2416
UCF 0.939 0.196 0.047 0.411 0.406 0.375 2385
ICF 0.937 0.240 0.051 0.427 0.556 0.374 2065
MD 0.948 0.207 0.048 0.426 0.426 0.368 2369
HC 0.889 0.002 0.001 0.024 0.796 0.004 15
CosRA 0.950 0.229 0.051 0.449 0.482 0.361 2298

RYM AUC MAP P R H I N

GR 0.855 0.057 0.005 0.160 0.069 0.143 1245
UCF 0.919 0.175 0.015 0.417 0.759 0.167 1124
ICF 0.932 0.352 0.017 0.445 0.914 0.177 656
MD 0.941 0.209 0.018 0.471 0.789 0.155 1089
HC 0.933 0.130 0.014 0.361 0.949 0.057 214
CosRA 0.952 0.292 0.019 0.482 0.879 0.144 819

large-degree objects being recommended (see the first column of Fig. 2), whereas HC prefers to recommend small-degree
objects (see the second column of Fig. 2). The two strong trends of MD and HC both have disadvantages, resulting in poor
diversity and novelty of MD and low accuracy of HC. Fortunately, the CosRA-based method finds a balance among accuracy
and diversity by recommending both large-degree and small-degree objects without any strong bias (see the last column of
Fig. 2).

For a more systematic analysis on the CosRA index, we extend it to a more general form by introducing two turnable
parameters, η1 and η2. Mathematically, the generalized CosRA index is formulated as

SCosRA∗

αβ =
1

(kαkβ)−η2

m
l=1

alαalβ
(kl)−2η1

. (14)

Then the personalized recommendation algorithm based on the generalized CosRA index works as follows: Firstly, the
resource of object α for user i is initialized by Eq. (4). Secondly, the resources of all objects are redistributed via the
transformation f ′(i)

= SCosRA∗f (i), where f (i) and f ′(i) record all objects’ initial and final resources, respectively. Finally, all
objects are sorted by f ′(i), and the top-L uncollected objects are recommended to user i. Notice that the original CosRA index
is a special case when η1 = η2 = −0.5. By varying η1 and η2, we study how the similarity index affects the performance
of recommendation. As shown in Fig. 3, the generalized CosRA-based method achieves its best performance when both η1
and η2 are around −0.5. Specifically, when focusing on accuracy, the values of AUC, MAP, Precision and Recall reach their
maximum when η1 and η2 are around −0.5, as marked by vertical and horizontal dash lines in the first four columns of
Fig. 3. The accuracy metrics perform best at almost the same parameters on all data sets, which is a strong evidence that the
optimal parameters, η1 = −0.5 and η2 = −0.5, for the generalized CosRA index are universal.

When focusing on diversity, the generalized CosRA-based method has better performance when η1 and η2 are smaller
than−0.5, as indicated by the larger values of Inter-similarity (Hamming distance) and the smaller values of Intra-similarity
in the fifth and sixth columns of Fig. 3, respectively. When η1 and η2 exceed −0.5, the diversity of the generalized CosRA-
based method largely decreases. When focusing on novelty, the diagrams are almost divided into two parts by η2 ≈ −0.5
and the generalized CosRA-based method has remarkably lower Popularity (i.e., higher novelty) when η2 < −0.5 as shown
in the last column of Fig. 3. That is mainly because smaller η2 benefits small-degree (i.e., unpopular) objects in receiving
resources. After a comprehensive consideration, it can be concluded that the original parameters, η1 = −0.5 and η2 = −0.5,
are almost optimal and the effectiveness of the generalized CosRA index cannot be remarkably improved by adjusting the
two parameters.
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Fig. 2. Degree distribution of the recommended objects after applying MD, HC and CosRA-based methods on the four data sets. Results are shown for one
realization in log–log plot. Blue squares and red triangles correspond to results under L = 20 and L = 50, respectively. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

5. Conclusions and discussion

In summary, we have proposed a vertex similarity index for better personalized recommendation, which combines
advantages of both the cosine index and the resource-allocation index. Based on the proposed index, we further propose
a personalized recommendation algorithm. Extensive experiments on real data sets suggest that the proposed algorithm
has better accuracy and well diversity and novelty compared with some benchmark methods. To further understand how
the similarity index works, we show the degree distributions of the recommended objects for all users. Results suggest
that the proposed method does not have strong bias on objects’ degrees compared with other benchmark methods. Indeed,
the similarity index finds a balance among the three important evaluation metrics and improves the overall algorithmic
performance. Further, we extend the similarity index to a more general form, however, results suggest that the original
similarity index is almost optimal. That is to say, the similarity index is free of parameters, which is a significant advantage
in real applications.

Ourwork highlights the importance of the vertex similarity index in personalized recommendation and suggests that the
adoption of suitable similarity index can enhance the algorithmic performance. By applying the novel similarity index to the
personalized recommendation, not only the accuracy is improved, but also the well diversity and novelty are achieved. In
fact, the similarity-based recommendation algorithm is similar to the previous hybridmethod in the case of thehybridization
parameter of the transition matrix being equal to 0.5 [29]. However, from a different perspective, we contribute to propose
a new vertex similarity index instead of a straightforward hybrid recommendation algorithm. Nevertheless, the consistent
with the existing hybrid recommendation algorithm verifies the rationality of the proposed parameter-free similarity index
and justifies that the index is very simple but effective in recommendation.
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Fig. 3. Performance of the generalized CosRA-based method after being tested on the four data sets. The parameters η1 and η2 are varying from −2 to
2. Vertical and horizontal dash lines correspond to η1 = −0.5 and η2 = −0.5, respectively. The length of recommendation list is set as L = 50 and the
results are not sensitive to the value of L. The results are averaged over 10 independent realizations. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Moreover, how to balance the accuracy, diversity and novelty in recommender systems is still an open issue [17].
Although the heat conduction method performs best for the diversity and novelty metrics, it has strong bias on objects’
degrees, leading to the poor performance on accuracy metrics. Nevertheless, our work provides a promising way to deal
well with the three metrics by applying a suitable vertex similarity index. In addition to focusing on solving the accuracy-
diversity dilemma, recent work has further investigated the stability of similarity measurements for bipartite networks by
using the average ranking position to describe the stability of the recommendation results [52]. It has been pointed out
that by using stable similarity measurements the performance of recommendation can be largely improved. Therefore, the
properties and the evaluation of the proposed similarity index remain further investigation.

Further more, pairwise vertex similarity is a fundamental index for many network functions and physical systems
[53,54]. That is to say, the proposed similarity index can find applications in solvingmany network-related problems, such as
link predication [55,56], community detection [57–59], spreading activation [60], network evolution [61,62], web searching
[63,64], data clustering [65,66], and gene ranking [67]. By contrast, it would be hard for the hybrid transition matrix to be
applied to solve these problems. As future works, we could consider designingmore suitable similarity indices for networks
[68,69] and introducing reputation systems into the personalized recommendation to improve its robustness in resisting
spamming attacks [70,71].
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