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Abstract

Industrial development is the process by which economies learn how to produce new products and services. But how

do economies learn? And who do they learn from? The literature on economic geography and economic development

has emphasized two learning channels: inter-industry learning, which involves learning from related industries; and

inter-regional learning, which involves learning from neighboring regions. Here we use 25 years of data describing

the evolution of China’s economy between 1990 and 2015–a period when China multiplied its GDP per capita by a

factor of ten–to explore how Chinese provinces diversified their economies. First, we show that the probability that a

province will develop a new industry increases with the number of related industries that are already present in that

province, a fact that is suggestive of inter-industry learning. Also, we show that the probability that a province will

develop an industry increases with the number of neighboring provinces that are developed in that industry, a fact sug-

gestive of inter-regional learning. Moreover, we find that the combination of these two channels exhibit diminishing

returns, meaning that the contribution of either of these learning channels is redundant when the other one is present.

Finally, we address endogeneity concerns by using the introduction of high-speed rail as an instrument to isolate the

effects of inter-regional learning. Our differences-in-differences (DID) analysis reveals that the introduction of high

speed-rail increased the industrial similarity of pairs of provinces connected by high-speed rail. Also, industries in

provinces that were connected by rail increased their productivity when they were connected by rail to other provinces

where that industry was already present. These findings suggest that inter-regional and inter-industry learning played

a role in China’s great economic expansion.

Keywords: Collective Learning, Economic Development, Industrial Structure, Economic Complexity, Product Space

∗Email address: hidalgo@mit.edu

Preprint submitted to arXiv March 7, 2017

http://arxiv.org/abs/1703.01369v1


1. Introduction

Between 1990 and 2015 China experienced one of the fastest episodes of economic growth in our recorded history.

China’s overall GDP grew by a factor of 30, from less than USD 400 billion in 1990 to more than USD 10 trillion in

2015. The per capita economic growth of China was also outstanding. China’s GDP per capita, adjusted by purchasing

power parity (PPP) and at constant prices, increased by nearly a factor of 10, from USD 1,516 in 1990 to more than

USD 13,400 in 2015. For comparison, in the same period global GDP grew only by a factor of three (from USD 22.5

trillion to USD 73.4 trillion) and global GDP per capita, also at PPP and constant prices, grew by less than a factor of

two (from USD 8,876 to USD 14,602).

The pace and scale of China’s great economic expansion have no historical precedent (Song et al., 2011; Zhu,

2012; Eichengreen et al., 2012; Felipe et al., 2013). If China’s GDP per capita, at PPP and constant prices, continued

growing at the same pace, it would surpass USD 130,000 per capita by the year 2040. But China is unlikely to repeat

this success in the next 25 years. This suggests that China’s great expansion was probably a distinct event in economic

history, and one from which many countries could learn.

But what explains China’s remarkable economic success? One theory is that China’s great expansion relied on the

export of products that were unusually sophisticated for China’s level of income (Rodrik, 2006; Hidalgo and Hausmann,

2009; Hausmann et al., 2014; Hidalgo, 2015). During this period China exported products like electronics and other

advanced manufactures that were at that time being produced mostly in countries with an income per capita that was

much larger than that of China (Lin, 2012). By succeeding in the export of these sophisticated products, China was

able to penetrate markets that could support higher wages, and consequently, higher incomes.

Evidence in support of this theory is shown in the work of Rodrik (2006), who estimated the level of sophistication

of Chinese exports by calculating the average income per capita of the countries exporting the same products than

China. Rodrik (2006) showed that even as early as 1992, when China’s GDP per capita at PPP and constant prices

was just USD 1,844, it exported products associated with an average level of income that was roughly of USD 13,500,

which corresponds to China’s level of income in 2015. Rodrik (2006) argued that this unusually high level of export

sophistication fueled China’s great economic expansion.

Further evidence supporting the idea that the sophistication of China’s exports is a factor explaining China’s
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rapid economic expansion is contained in the literature on economic complexity (Hidalgo and Hausmann, 2009;

Tacchella et al., 2012; Hausmann et al., 2014; Hidalgo, 2015), which has focused on developing measures of a coun-

try’s export sophistication that avoid the circularity of using income data. The consensus of this literature is also that

countries with a relatively high level of economic complexity–countries that export a diverse set of non-ubiquitous

goods–grow, on average, faster than countries with a similar level of income but lower levels of economic complexity.

If China’s economy expanded because it succeeded in the export of sophisticated products, then the question is:

how did China learn to produce products of increasing levels of sophistication? Here the literature provides two

answers. One is that economies learn by leveraging the capabilities embodied in related industries. That is economies

that are good at producing shirts, would have an easier time learning how to produce pants, coats, and socks. The

other idea is that economies learn from neighboring regions. That is the probability that a province would succeed at

making shirts depends on having neighboring regions that have already developed the capacity to produce shirts.

The view that economic development is a collective learning process is found repeatedly in the work of develop-

ment economists, evolutionary economists, economic geographers, and in the literature of economic clusters.

Evolutionary economists, going back to the seminal work of Nelson and Winter (1982), have pushed the idea that

economies learn by accumulating capabilities in networks of individuals and firms. In this strand of literature, capa-

bilities are explicit and tacit knowledge (Polanyi, 1958; Collins, 2010) that firms embody in routines and procedures

that make the learning process deeply path dependent. The ability of a firm to accumulate these capabilities depends,

among other factors, on the institutional environment of where the firm is located (Saxenian, 1996), the levels of trust

in the population (Fukuyama, 1995), the firms’ organizational structure (Powell, 1990), the dynamic capacity of a firm

to learn (Teece and Pisano, 1994), the social networks where the economy is embedded (Granovetter, 1985), and of

course, on the existence of related firms and neighboring regions that have already accumulated the right capabilities.

It is not surprising, therefore, that much work has gone into understanding the channels that facilitate the ability

of economies to learn. In broad strokes, this literature has focused on two learning channels: inter-industry learning,

which has been studied extensively, and focuses on how firms learn from related industries that are already in their

region; and inter-regional learning, which has been much less studied, and focuses on the learning that takes place

across geographic boundaries.
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Inter-industry learning has been studied at the international, regional, and firm level. This literature has focused

on testing how the existence of related industries increases the probability that an industry will enter a region, exit a

region, or became more productive.

At the international level, Hidalgo et al. (2007) and Hausmann et al. (2014) have used export data to show that

the probability that a country will develop comparative advantage in a new product depends strongly on the number

of related products that it already exports. To establish this stylized fact Hidalgo et al. (2007) introduced the idea

of the product space, a network connecting products that countries are likely export in tandem. Using this network

representation it is easy to score each product that a country does not yet export based on the number of related

products that the same country is already exporting. This score, called density, is a statistically good predictor of the

probability that a country will develop comparative advantage in a specific product in the future.

At the regional level, people have used data on input-output relationships, labor flows, and the product portfolios of

manufacturing plants to measure industrial relatedness (Boschma , 2017; Delgado et al., 2016; Boschma et al., 2012;

Semitiel-Garcia and Noguera-Mendez, 2012; Boschma and Iammarino, 2009; Frenken et al., 2007). Neffke et al. (2011)

used data on the product portfolios of manufacturing plants in Sweden to connect industries and showed respectively

that the probability that an industry will enter, or exit, a region, increases, or decreases, with the number of related in-

dustries present in it. Delgado et al. (2014) used data from the US Cluster Mapping Project to show that firms located

in clusters of related industries tend to experience higher patenting and employment growth. Delgado et al. (2010)

also shows that clusters tend to enhance entrepreneurship, since start-up industries located in clusters tend to grow

faster.

At the firm level, Teece (1980) has argued that coherent multi-product enterprises (firms that produce a diverse

portfolio of related products) are an efficient way to organize economic activity when the development of products re-

quires re-utilizing proprietary knowhow and specialized and indivisible physical assets (Teece, 1982). More recently,

empirical work like that of Neffke and Henning (2013) has leveraged labor-flow data to connect related industries, by

arguing that industries that are more likely to exchange labor are related in terms of the skills that they require. Using

their skill-relatedness metric, they found that firms are more likely to diversify their product portfolios to include the

products that were being produce by related industries (Neffke and Henning, 2013), adding to the evidence that firm
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diversification is also path dependent and coherent (Teece et al., 1994). By studying empirically the effects of five

different dimensions of agglomeration on the survival chances of new entrepreneurial firms in China, Howell et al.

(2016) found that increasing local related variety has a stronger positive effect on new firm survival than other types

of agglomeration.

The inter-regional learning literature, on the other hand, is sparser, and it focuses on how economies learn from

neighboring regions instead of similar industries. At the international level, Bahar et al. (2014) showed that the proba-

bility that a country will start exporting a product increases significantly if that country shares a border with a neighbor

that is already a successful exporter of that product, even after discounting the effects of product relatedness captured

in the product space. At the regional level, Boschma et al. (2016) used data from the United States to show that regions

are more likely to develop industries that are present in neighboring regions. Acemoglu et al. (2015) studied the direct

and spillover effects of local state capacity in Colombia, and found that spillover effects are sizable, accounting for

about 50 percent of the quantitative impact of an expansion in local state capacity. At the firm level, Holmes (2011)

studied the geographic expansion of Wal-Mart stores in the US, and found that locations of new Wal-Mart stores tend

to be in close geographic proximity to regions where Wal-Mart already had a high density of stores.

Yet, one of the issues that limits this literature is the sparse causal evidence supporting both inter-industry learning

and inter-regional learning. One effort in this direction is the work of Ellison et al. (2010), who explored data from

US manufacturing industries to check the effect of the cost of moving goods, people, and ideas on the co-location of

industries, i.e. inter-industry learning. To reduce concerns of reverse causality, Ellison et al. (2010) used data from

UK industries and from US areas as instruments.

In this paper, we contribute to this expanding body of literature by studying the role of collective learning in the

great economic expansion experienced by China between 1990 and 2015. First, we show that the probability that a

new industry will grow in a province increases with the number of related industries present in it, a fact supporting

theories of inter-industry learning. Next, we show that the probability that a new industry will grow in a province

also increases with the number of neighboring provinces in which that industry is already present, a fact that supports

inter-regional learning theories. Moreover, we find that both learning channels work together but exhibit diminishing

returns, meaning that when one learning channel is sufficiently active (inter-industry or inter-regional) the marginal
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contribution of the other one is reduced (the channels are substitutes). Finally, we address endogeneity concerns by

using the introduction of high-speed rail among Chinese provinces to isolate the effects of inter-regional learning. The

introduction of high-speed rail is an instrument that affects the travel time between provinces, but not the similarity

among industries. Our differences-in-differences (DID) results show that, after the introduction of high speed rail, the

pairs of provinces connected by rail became more similar in terms of their industrial structure. Also, our results show

a significant increase in productivity for industries located in provinces that became connected by high-speed rail to

other provinces where that industry was present. Together, these results add to the evidence that China’s economic

expansion benefited from inter-industry and inter-regional learning.

2. Data

2.1. China’s firm data

We use data from China’s stock market extracted from the RESSET Financial Research Database, which is pro-

vided by Beijing Gildata RESSET Data Tech Co., Ltd.1, a leading provider of economic and financial data in China.

Our data set covers 1990-2015, a period when China achieved rapid economic development. This data set provides

some basic registration and financial information of publicly listed firms in Chinese stock exchanges, such as listing

date, delisting date, registered address, industry category, yearly revenue, and number of employees. Although the

numbers of newly listed and delisted firms in each year fluctuates, the overall number of firms increases almost lin-

early with time (see Figure S1). The registered addresses of firms cover 31 provinces in China. All these listed firms

in our data set are aggregated into two levels, 18 categories at the sector level and 70 subcategories at the sub-sector

level. The aggregation is based on the “Guidelines for the Industry Classification of Listed Companies” issued by the

China Securities Regulatory Commission (CSRC)2 in 2011 (see online Appendix for details). CSRC category and

CSRC subcategory codes as well as their associated industry names are shown in Figure S2. Moreover, to measure the

productivity of the industries in a province, we use the total revenue of firms divided by the total number of employees

in that industry in that province.

1http://www.resset.cn

2http://www.csrc.gov.cn
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2.2. Distance and macroeconomic indicators

To study inter-regional learning, we use geographic distance as a measure of physical proximity between regions.

The geographic distance (Di, j) between provinces i and j is defined as the distance between the capital cities of two

provinces (in China capital cities are likely to be the largest city in a province). Together, we collect macroeconomic

data at the province-level, including Gross Domestic Product per capita (GDP per capita), resident population, total

value of imports and exports, urban area, and total area, from the China Statistical Yearbook, which is published by

the National Bureau of Statistics of China3. As an urbanization metric, we use the share of urban area in a province.

These macroeconomic indicators cover the 1990-2015 period and are available for the 31 provinces in China. Brief

descriptions and summary statistics of these distance and macroeconomic indicators can be found in Table S1.

3. Results

We organize our results into four sections. First, we explore inter-industry learning by constructing a network

of related industries, or industry space, and explore how the probability that an industry will emerge in a province

increases with the number of related industries already present in it. Next, we explore inter-regional learning by using

geographic data to study how the probability that an industry will emerge in a province increases with the presence of

that industry in neighboring provinces. Then, we combine both geographic and industrial similarity data to study the

interaction between inter-industry and inter-regional learning. Our results shows that learning exhibits diminishing

returns, meaning that when one learning channel (inter-regional or inter-industry) is sufficiently active, the other

channel does not contribute as much (they are substitutes). Finally, we use the introduction of high-speed rail between

provinces as an instrument to gather evidence in support of the inter-regional learning hypothesis. Our differences-in-

differences (DID) estimate shows that the provinces connected by high speed rail experienced a significant increase

in their industrial similarity, and also, that industries located in provinces that were connected by rail increased their

productivity when these rail connections connected them to other provinces where the same industry was present.

3http://www.stats.gov.cn

7



3.1. Inter-industry learning

We explore how the probability that an industry will appear in a province is affected by the number of related

industries already present in it, by first constructing a network of industries, or industry space, and then use this

network to see if the probability that an industry will emerge in a province increases with the number of related

industries that are already present in it.

First, we connect provinces and industries by building a “province-industry” bipartite network, where the weight

of link xi,α is the number of firms in province i that operate in industry α (see Figure S3 for illustration). Going

forward, we use Greek letters for indices indicating industries and Roman letters for indices indicating provinces.

Next, we estimate the proximity φα,β between industries α and β by calculating the cosine similarity between

xi,α and xi,β across all provinces. Following Hidalgo et al. (2007), we assume the co-location of industries to be an

imperfect proxy of their similarity, since pairs of industries that tend to co-locate are more likely to require similar

capabilities (whether these are human capital, institutional factors, logistic facilities, or geographic resources) than

pairs of industries that do not tend to be co-located. Formally, we let xi,α,t and xi,β,t be the number of firms in province

i that respectively operate in industries α and β at year t. Then, the proximity φα,β,t is given by:

φα,β,t =

∑

i xi,α,t xi,β,t
√

∑

i (xi,α,t)2
√

∑

i (xi,β,t)2
. (1)

Figure 1 shows China’s industry space for the year 2015 (see Figure S4 and online Appendix for details on the

visualization methods used). We note that China’s industry space exhibits both, a core-periphery and a dumbbell

structure, with a tightly knit core of manufacturing industries (on the left), and another tightly knit core of service and

information related activities (on the right). This dumbbell structure is also visible when looking at the hierarchically

clustered matrix of industrial proximities (see Figure S5). In agreement with previous findings, which used data

on products instead of industries (Hidalgo et al., 2007), we find extractive and agricultural activities to occupy the

periphery of the industry space.

Next, we look at how the structure of the industry space shapes the economic diversification paths of Chinese

provinces using three methods: a network visualization, a graphical method, and a multivariate statistical model.

First, we define an industry to be present in a province if that province has revealed comparative advantage in

that industry. We define the revealed comparative advantage RCAi,α,t for province i in industry α at year t following
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Figure 1: Network representation of China’s industry space in 2015. Nodes (circles) represent industries. Links connect industries that are likely to

locate in the same province. Nodes are classified into 70 subcategories and colored according to 18 sectors. The size of each node is proportional

to the number of firms in that industry. The color and weight of links correspond to the proximity value (φ) between two industries.

Balassa (1965). That is, we use the ratio between the observed number of firms operating in industry α in province

i and the expected number of firms of that industry in that province. Formally, the revealed comparative advantage

RCAi,α,t is given by:

RCAi,α,t =
xi,α,t
∑

α xi,α,t

/ ∑

i xi,α,t
∑

α

∑

i xi,α,t

, (2)

where xi,α,t is the number of firms in province i that operate in industry α at year t. We say industry α is present in

province i at year t if RCAi,α,t ≥ 1.

Figure 2 uses black circles to show the industries that were present in Beijing, Hebei, Shanghai, and Zhejiang,

in 1992, 1995, 2000, 2005, 2010, and 2015. In these four illustrative examples, we can see that the new industries

that are present in each of these provinces tend to be connected to other industries that were already present in

that province. For example, Beijing and Shanghai gradually occupy Internet and financial services while Hebei and

Zhejiang gradually occupy manufacturing industries. In the case of Shanghai, we see how the province gradually

shifts its revealed comparative advantage from manufacturing to service and information activities during this period
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Figure 2: Evolution of China’s provincial industrial structure between 1992 and 2015. Four illustrated provinces are Beijing, Hebei, Shanghai, and

Zhejiang. Black circles indicate industries in which a province has revealed comparative advantage (RCA ≥ 1).

of economic development.

Next, we formalize this observation by constructing an indicator for each industry and province, counting the

number of related industries that are already present in that province (i.e., RCA ≥ 1). In the literature this estimator

is called density (Hidalgo et al., 2007; Boschma et al., 2013, 2016). Here, to avoid confusion with a similar indicator

we will introduce later for neighboring provinces, we call this estimator the density of active related industries (ω).
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Figure 3: Inter-industry learning. (A) Distribution of the density of active related industries for each pair of provinces and industries. The pink

distribution focuses only on pairs of provinces and industries that developed revealed comparative advantage in the next five years. The blue

distribution is for the pairs of industries and provinces that did not develop revealed comparative advantage. The mean of the pink distribution is

significantly larger than that of the blue distribution (ANOVA p-value=2.1×10−40 ). (B) Probability that a new industry will appear in a province as

a function of the density of active related industries (ω). Bars indicate average values and error bars indicate standard errors. Results show averages

for 2001-2015 using five-year intervals. In all calculations, densities were calculated for the base year.

Formally, the density of active related industries (ωi,α,t) for industry α in province i at year t is given by:

ωi,α,t =

∑

β φα,β,tUi,β,t
∑

β φα,β,t
, (3)

where Ui,β,t takes the value of 1 if province i has revealed comparative advantage in industry α at year t (i.e., RCAi,β,t ≥

1) and 0 otherwise. Density is simply an indicator telling us, for each industry, what is the fraction of related industries

that are already present in that province.

Next, we look at the probability that industry α would appear in province i as a function of the density of active

related industries in that province. To reduce noise, we follow Bahar et al. (2014) and restrict the appearance of new

industries to two conditions: a backward condition, which requires an industry to have RCA below 1 during the two

years prior to the beginning of the period; and a forward condition, which requires an industry to sustain RCA above

1 for the two years after the end of the period.

Figure 3A shows the frequency of densities of active related industry for pairs of industries and provinces that

developed revealed comparative advantage (in pink) and that did not develop revealed comparative advantage (in blue)

in a five-year period. The distributions show that–on average–the density of an industry in the provinces that developed
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revealed comparative advantage in that industry five years later is significantly larger (ANOVA p-value=2.1 × 10−40)

than in those that did not (see Figure S6 for additional robustness check).

Figure 3B looks at the probability that a province will develop revealed comparative advantage in an industry

as a function of the density of active related industries in that province five years ago. The increasing and convex

relationship shows that the probability that an industry will develop revealed comparative advantage in a province

increases strongly with the density of active related industries. To reduce noise, we use a fixed industry space (φα,β)

in year 2015 in Eq. (3), but we note that our results are robust (see Figure S7) when we use a time-varying industry

space (φα,β,t), where the industrial proximity is calculated using data only from previous years.

Finally, we use a multivariate probit model to estimate how the probability that a province will develop revealed

comparative advantage, or keep revealed comparative advantage in an industry, changes with the density of active

related industries. We separate our dataset into two sets: one set containing all province-industry pairs that did not have

revealed comparative advantage (that could potentially be developed), and another set containing all pairs of provinces

and industries that had comparative advantage (and that could lose it). Then, we set up two probit regressions, one

explaining the probability that a province without RCA in an industry will develop RCA in that industry in the next

five years, and the other explaining the probability that a province with RCA in an industry will keep RCA in that

industry. In both of these regressions we control for the number of provinces with revealed comparative advantage

in that industry and the number of industries with revealed comparative advantage in that province. Our empirical

specification is:

Ui,α,t+5 = β0 + β1ωi,α,t + β2 Mα,t + β3Ni,t + µt + εi,α,t, (4)

where Ui,α,t+5 (Ui,α,t) takes the value of 1 if RCAi,β,t+5 ≥ 1 (RCAi,β,t ≥ 1) and 0 otherwise, ωi,α,t is the density of active

related industries for industry α in province i at year t, Mα,t =
∑

i Ui,α,t is the number of provinces where that industry

has revealed comparative advantage, Ni,t =
∑

αUi,α,t is the number of industries with revealed comparative advantage

in that province, and εi,α,t is the error term. The regression equation includes the year-fixed effects, µt, to control for

any time-varying characteristics of provinces and industries.

The regression coefficient β1 captures the impact of the density of active related industries in the probability of

developing revealed comparative advantage in a new industry (see columns (1)-(3) of Table 1) and in the probability
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Table 1: Probit regressions for inter-industry learning.

Independent Variables

Probit Model

Developing RCA in a Five-year Period Keeping RCA in a Five-year Period

(1) (2) (3) (4) (5) (6)

Density of Active Related Industries
3.8844*** 4.2084*** 11.510*** -0.5753** -1.7392*** 15.266***

(0.1622) (0.1661) (0.3826) (0.2266) (0.2665) (1.1658)

Number of Active Provinces in Industry
0.0559*** 0.0624*** -0.0740*** -0.0834***

(0.0028) (0.0029) (0.0059) (0.0062)

Number of Active Industries in Province
-0.1348*** -0.3101***

(0.0063) (0.0193)

Observations 25713 25713 25713 6837 6837 6837

Pseudo R2 0.0626 0.0924 0.1217 0.0119 0.0497 0.1397

Notes: Probit regressions modeling the probability of developing a new industry, or keeping an industry, in a Chinese province, as a function of the

density of active related industries in a province, the number of provinces active in an industry, and the number of industries active in a province.

Data is for the 2001-2015 period. Probit regressions include year-fixed effects. Significant level: ∗p < 0.1, ∗ ∗ p < 0.05, and ∗ ∗ ∗p < 0.01.

of keeping revealed comparative advantage in an industry (see columns (4)-(6) of Table 1). In all specifications we

find the density of active related industries to be a strong, positive, and significant predictor of both, the probability of

developing a new industry and keeping an industry in a Chinese province. In all cases, by controlling for the number

of active industries in a province and the number of provinces that are active in an industry we show that our findings

are not just a reflection of the industrial diversity of a province or the ubiquity of an industry.

3.2. Inter-regional learning

Next we explore our data in search for evidence in support of inter-regional learning. Once again, we divide our

analysis into three sections, a data visualization (for illustrative purposes), a graphical method, and a multivariate

statistical model.

Figure 4 shows the spatial evolution of the presence of industries in Chinese provinces using data on the revealed

comparative advantage of four industries (Chemical Products Manufacturing, Pharmaceuticals, Electric Machinery

Manufacturing, and Wholesale) in each province between 1992 and 2015 (see Figure S8 for an equivalent chart using

the number of firms). The saturation of the color indicates the natural logarithm of the revealed comparative advantage

of that province in that industry (ln(RCA+1)). In these four illustrative examples, we see that provinces that developed

revealed comparative advantage in an industry tend to be neighbors of provinces that already had revealed comparative

advantage in that industry, providing suggestive evidence for inter-regional learning.

Next, following Bahar et al. (2014), we explore whether provinces in close physical proximity tend to have a
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Figure 4: Evolution of revealed comparative advantage of provinces in China between 1992 and 2015. Four illustrated industries are Chemical

Products Manufacturing Industry, Pharmaceutical Industry, Electric Machinery Manufacturing Industry, and Wholesale Industry (the keys of labels

correspond to Figure S2. The saturation of the color indicates the value of ln(RCA + 1).

more similar industrial structure. To do so, we measure the industrial similarity of a pair provinces using the cosine

similarity of the vectors summarizing the revealed comparative advantage of industries in each province. Formally,

let yi,α,t = ln(RCAi,α,t + 1) and y j,α,t = ln(RCA j,α,t + 1). Then, the industrial similarity ϕi, j,t between provinces i and j

at year t will be given by:

ϕi, j,t =

∑

α yi,α,ty j,α,t
√

∑

α (yi,α,t)2
√

∑

α (y j,α,t)2
. (5)
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Figure 5: (A) Distribution of industrial similarity between pairs of neighboring provinces (in pink) and non-neighboring provinces (in blue). The

red and blue curves are, respectively, normal fits for the distributions for neighboring and non-neighboring province pairs. (B) Industrial similarity

between all pairs of provinces as a function of their geographic distance. Bars correspond to the average industrial similarity (ϕ) of pairs of

provinces at that distance and error bars correspond to standard errors. The blue dash line represent a linear fit of the unbinned data. Pearson’s

correlation between industrial similarity and geographic distance is r = −0.32.

Figure 5A shows the distribution of the industrial similarities (ϕi, j) in 2015 for both, pairs of neighboring provinces

(in pink) and pairs of non-neighboring provinces (in blue). We find that the industrial similarity of neighboring

provinces is significantly larger than the similarity of non-neighboring provinces (ANOVA p-value=8.1× 10−4). Fig-

ure 5B shows the industrial similarity (ϕi, j) as a function of geographic distance (Di, j). Once again, we see that pairs

of provinces in close physical proximity tend to be more similar than distant pairs of provinces (see Figure S9 for

equivalent charts using other distance and travel time measures).

Next, we formalize these observations by constructing an indicator, for each province, of the number of neighbor-

ing provinces that have developed revealed comparative advantage in each industry. We call this estimator the density

of active neighboring provinces (Ω). For province i in industry α at year t, the density of active neighboring provinces

Ωi,α,t is given by:

Ωi,α,t =
∑

j

U j,α,t

Di, j

/

∑

j

1

Di, j

, (6)

where Di, j is the geographic distance between provinces i and j, and the binary variable U j,α,t takes the value of 1 if

RCA j,α,t ≥ 1 and 0 otherwise.

15



0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.00

0.05

0.10

0.15

0.20

0.25

F
re

q
u

e
n

c
y

Density of Active Neighboring Provinces

New Industry in 5 Years

No New Industry in 5 Years

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.00

0.05

0.10

0.15

0.20

P
ro

b
a

b
ili

ty
o

f
N

e
w

In
d

u
s
tr

y
in

5
Y

e
a

rs

Density of Active Neighboring Provinces

A B

Figure 6: Inter-regional learning. (A) Distribution of the density of active neighboring provinces for each pair of provinces and industries. The

pink distribution focuses only on pairs of provinces and industries that developed revealed comparative advantage in the next five years. The blue

distribution is for the pairs of industries and provinces that did not develop revealed comparative advantage. The mean of the pink distribution

is significantly larger than that of the blue distribution (ANOVA p-value=1.4 × 10−37). (B) Probability of a province developing comparative

advantage in an industry as a function of the density of active neighboring provinces five years ago. Bars indicate average values and error bars

indicate standard errors. Results show averages for 2001-2015 using five-year intervals.

Once again, we use the density estimator (Ω) to explore whether the presence of a new industry in neighboring

provinces increases the probability that this industry will appear in a province in the future. To perform this analysis,

we estimate the density of active neighboring provinces (Ω) for each province and industry in a base year and look

at the new industries that appear in that province five years later. To reduce noise, we follow Bahar et al. (2014) and

restrict the presence of new industries to two conditions: a backward condition, asking an industry to have an RCA

below 1 for two years before the beginning of the period; and a forward condition, asking an industry to be present

with RCA above 1 for two years after the end of the period.

Figure 6A compares the distribution of densities (Ω) for industry-province pairs that developed revealed com-

parative advantage in an industry in a five-year period (in pink) and those that did not (in blue). We find that the

average density of the province-industry pairs that developed revealed comparative advantage in a five-year period is

significantly larger than the province-industry pairs that did not (ANOVA p-value=1.4× 10−37).

Figure 6B shows the probability that a province will develop revealed comparative advantage in an industry as a

function of the density of active neighboring provinces (Ω). Once again, we find an increasing and convex relationship
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Table 2: Probit regressions for inter-regional learning.

Independent Variables

Probit Model

Developing RCA in a Five-year Period Keeping RCA in a Five-year Period

(1) (2) (3) (4) (5) (6)

Density of Active Neighboring Provinces
1.5393*** 1.5621*** 1.6969*** -1.4079*** -1.7160*** 0.5836*

(0.0781) (0.0782) (0.2116) (0.1317) (0.1332) (0.3311)

Number of Active Industries in Province
0.0404*** 0.0402*** -0.0555*** -0.0660***

(0.0025) (0.0025) (0.0049) (0.0051)

Number of Active Provinces in Industry
-0.0053 -0.1045***

(0.0075) (0.0132)

Observations 25713 25713 25713 6837 6837 6837

Pseudo R2 0.0473 0.0648 0.0648 0.0342 0.0636 0.0793

Notes: Probit regressions modeling the probability of developing a new industry, or keeping an industry, in a Chinese province, as a function of the

density of active neighboring provinces in an industry, the number of industries active in a province, and the number of provinces active in an

industry. Data is for the 2001-2015 period. Probit regressions include year-fixed effects. Significant level: ∗p < 0.1, ∗ ∗ p < 0.05, and

∗ ∗ ∗p < 0.01.

showing that the probability that a province will develop revealed comparative advantage in an industry increases

strongly with the fraction of active neighboring provinces in that industry. These results are robust (see Figure S10)

when we use other distance metrics in Eq. (6).

Finally, we use a multivariate probit model to estimate how the probability that a province will develop revealed

comparative advantage, or keep revealed comparative advantage in an industry, is affected by the number of active

neighboring provinces. We use this model to control for the number of industries in which that province already

has revealed comparative advantage, and the number of provinces that already have comparative advantage in that

industry. We estimate the following empirical specification:

Ui,α,t+5 = β0 + β1Ωi,α,t + β2Ni,t + β3Mα,t + µt + εi,α,t, (7)

whereΩi,α,t is the density of active neighboring provinces for industry α and province i at year t, and all other variables

are defined as the same in Eq. (4).

Table 2 presents the results of our probit regressions. Once again, we divide our dataset into two sets: one

containing all pairs of provinces and industries that do not have revealed comparative advantage (that we use to

predict the ones that will develop RCA), and the other, with all province industry pairs with revealed comparative

advantage (that we use to predict the ones who can sustain RCA).

Columns (1)-(3) of Table 2 show the density of active related industries is a positive and significant predictor
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Figure 7: Joint probability of a province developing revealed comparative advantage in a new industry in a five-year period given the density of

active neighboring provinces (Ω) in horizontal-axis and the density of active related industries (ω) in vertical-axis.

of the industries that a province will develop in the future, suggesting that provinces are more likely to develop an

industry when they have neighbors that are competitive in that industry. The effect of active neighboring provinces

on sustaining RCA in an industry, however, are not as clear (see columns (4)-(6) of Table 2). The bi-variate effects

is negative, but becomes positive after controls. We interpret this as evidence of a tension between competition and

learning, since an active neighboring province is a source of learning when that province does not have an industry,

but it is also a source of competition when that province has developed that industry. In all cases, by controlling for

the number of active industries in a province and the number of provinces that are active in an industry we show that

our findings are not just a reflection of the industrial diversity of a province or the ubiquity of an industry.

3.3. Combining inter-industry and inter-regional learning

In the previous two sections we provided evidence supporting inter-regional and inter-industry learning in China’s

economic development. But do inter-regional and inter-industry learning work together? Or are they substitutes? In

this section we combine both channels using graphical statistical methods and multivariate statistical models.

First, we calculate the joint probability that a new industry will emerge in a province as a function of both the

density of active neighboring provinces (Ω) and the density of active related industries (ω). All filters and definitions

are equivalent to those used in the previous two sections. In agreement with our previous results, in Figure 7 we find
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that the probability that an industry will appear in a province in a five-year period increases with both, the density

of active neighboring provinces (Ω at horizontal-axis) and the density of active related industries (ω at vertical-axis).

The result is robust when using other density measures (see Figure S11).

To explore the interaction between these two learning channels we use a probit model where the dependent variable

Ji,α,t+5 counts the number of provinces that developed comparative advantage in an industry. Once again we consider

a backward and forward condition to reduce noise. Formally, Ji,α,t+5 = 1 if Ui,α,t & Ui,α,t−1 & Ui,α,t−2 = 0 and

Ui,α,t+5 & Ui,α,t+6 & Ui,α,t+7 = 1. The empirical specification is given by

Ji,α,t+5 = β0 + β1Ωi,α,t + β2ωi,α,t + β3Ωi,α,tωi,α,t + µt + εi,α,t, (8)

where Ωi,α,t is the density of active neighboring provinces, ωi,α,t is the density of active related industries, Ωi,α,tωi,α,t

is the interaction term of the two densities, µt are the year-fixed effects, and εi,α,t is the error term.

Table 3 presents the results of the probit regressions (see Table S3 for summary statistics of regression variables).

Column (1) shows the basic regression considering the density of active neighboring provinces (Ω) and the density of

active related industries (ω). We find both effects are jointly significant. Column (2) adds an interaction term between

the two densities (Ωω). Once we add the interaction term we find the individual coefficients for both densities (Ω

and ω) to increase, while the interaction term is negative and significant. This indicates the presence of diminishing

returns, meaning that the partial effect of each learning channel is reduced when the second channel is present. That

is, when one learning channel is sufficiently active (inter-industry or inter-regional), the marginal contribution of the

other one is reduced. Together, we find that the inter-industry learning has slightly stronger effect in activating new

industries as suggested by its larger regression coefficient.

To check the robustness of our results we consider alternative definitions for both, the density of active neighboring

provinces (Ω) and the density of active related industries (ω). In columns (3) and (4) of Table 3 we repeat the exercise

using simply the ratio of active neighboring provinces and the ratio of active related industries as independent variables

(see online Appendix for details). This is equivalent to calculating both densities (Ω and ω) using simple proportions

instead of weighted averages. Once again, we find both effects are significant and there are diminishing returns to

the addition of an alternative learning channel. Column (5) uses just the number of active neighboring provinces

and the number of active related industries, instead of densities or ratios. We confirm the same results, although the
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Table 3: Interaction between inter-industry learning and inter-regional learning.

New Industries in a Five-year Period

Probit Model Using both Densities and Their Alternative Definitions

(1) (2) (3) (4) (5) (6)

Density of Active Neighboring Provinces
1.3092*** 4.3405***

(0.0807) (0.2421)

Density of Active Related Industries
3.7163*** 6.2435***

(0.1713) (0.2616)

Interaction Term 1
-11.8437***

(0.9136)

Ratio of Active Neighboring Provinces
0.5474*** 0.6643***

(0.0499) (0.0678)

Ratio of Active Related Industries
0.7802*** 0.8502***

(0.0374) (0.0472)

Interaction Term 2
-0.3701**

(0.1572)

Number of Active Neighboring Provinces
0.1739***

(0.0150)

Number of Active Related Industries
0.2093***

(0.0125)

Interaction Term 3
-0.0414***

(0.0065)

Number of Neighboring Provinces
0.0049

(0.0103)

Number of Related Industries
0.0178**

(0.0090)

Interaction Term 4
0.0010

(0.0019)

Observations 25713 25713 25713 25713 25713 25713

Pseudo R2 0.0819 0.0974 0.0653 0.0658 0.0658 0.0234

Notes: The regressions consider both effects of inter-regional learning and inter-industry learning. Data are for the 2001-2015 period. The probit

regressions include the year-fixed effects. Significant level: ∗p < 0.1, ∗ ∗ p < 0.05, and ∗ ∗ ∗p < 0.01.

explanatory power of this model is smaller than the one involving densities, meaning that the use of weighted averages

to calculate densities contributes relevant information. Finally, column (6) presents a negative control: a model using

the number of neighboring provinces and the number of related industries, no matter whether these are active or not.

In this case, the model loses almost all its explanatory power and the effects are small, meaning that our results come

from having active neighboring provinces and active related industries, but not from just having many neighboring

provinces or just having many related industries.

3.4. High-speed rail and inter-regional learning

Finally, we study how the introduction of high-speed rail affected inter-regional learning using a differences-in-

differences (DID) analysis. The introduction of high-speed rail is an adequate instrument because it reduces the

barriers to inter-regional learning but should not affect inter-industry learning. In this section we check the effects of

inter-regional learning first in terms of industrial similarity (measured by looking at the set of industries present in a
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province), and second, in terms of productivity (by looking at the increase in productivity of industries in provinces

connected by high-speed rail)

During China’s great economic expansion commercial train service was improved through several “speed-up”

campaigns. These took the speed of trains from an average of only 48 km/h (in 1990s) to more than 300 km/h in the

best cases (Jiao et al., 2014). By 2015, over 90 Chinese cities were connected by high-speed rail (Lin et al., 2015),

and as of September 2016, China had the world’s longest high-speed rail network, with over 20,000 km of track, a

length that is longer than the rest of the world’s high-speed rail tracks combined (Cao et al., 2013).

The introduction of high-speed rail reduced travel time among provinces, encouraging face-to-face interactions

and potentially promoting learning among provinces (Zheng and Kahn, 2013). Face-to-face interactions are consid-

ered important for learning, since they are a significant and effective way to build trust and to share complex ideas,

even in the era of online communication technologies (Storper and Venables, 2004). The introduction of transport, or

reductions in transportation costs, has been used in the past as instruments to test the effect of cost on the social inter-

actions. For instance, Catalini et al. (2016) used the introduction of Southwest airlines, a discount airline in the US,

to test whether reductions in ticket prices of direct flights between U.S. cities increased collaboration among scholars

from the universities connected by these cheaper flights.

Similarly to Catalini et al. (2016) we address endogeneity concerns using the differences-in-differences (DID)

method and the introduction of high-speed rail as an instrument. Because the introduction of high speed rail does

not affect the similarity and productivity of industries within a province, this instrument help us isolate the effects of

inter-regional learning from inter-industry learning.

The DID method requires two groups: treatment and control. In our DID analysis, pairs of provinces belong to the

treatment group if they are connected by high-speed rail in 2015, otherwise they belong to the control group. Although

there are many rounds of “speed-up” campaigns, we consider only the period between 2004 and 2014, since this allows

us to capture the construction of numerous railroads (and hence obtain a larger sample), instead of observing just a few.

The introduction of high-speed rail was identified using the Google Maps API in 2015 considering the accessibility

between capital cities of provinces through high-speed rail passenger trains (see online Appendix for details).

We justify the use of the DID method as an identification strategy using two observations. On the one hand, the
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construction of high-speed rail between provinces should be close to random (Qin, 2016), at least with respect to

the dependent variable (industrial similarity and productivity in our case and productivity of firms), and with respect

to province level characteristics such as the levels of economic development and urbanization (Bertrand et al., 2004;

Besley and Case, 2000). This is because the construction of high speed rail was driven by political reasons (and not

to connect provinces with similar industrial structures). For example, the “Go West” plan connected the coast with

China’s Far West. There is also the “Silk Road Economic Belt” plan (Albalate and Bel, 2012; Rolland, 2015), and

plans to connect China with South East Asia (Garver, 2006). The construction of rail, therefore, can be seen as a

quasi-experiment Catalini et al. (2016); Qin (2016). In fact, Qin (2016) pointed out that the introduction of high-

speed rail in China can be treated as a quasi-natural experiment because most new high-speed rails were implemented

on existing railway lines instead of new railways.

On the other hand, the DID method is justified when the pre-trend of the dependent variable on the control and

treatment groups is similar. Our data satisfies this condition prior to year 2005 (see Figure 8A for industrial similar-

ity). To demonstrate this, we perform the event study by running the following ordinary least-squares (OLS) linear

regression model using data between 1997 and 2015 in order to predict the industrial similarity between provinces i

and j for each year as:

ϕi, j,t = β0 +

2015
∑

k=1997

βk(Treati, j ∗ 1{t = k}) + εi, j. (9)

Here Treati, j is a dummy variable denoting whether provinces i and j are connected by high-speed rail and 1{t = k}

is an event time indicator, which is equal to 1 for the year where the pair was connected by high-speed rail. In other

words, Eq. (9) regresses the industrial similarity between pairs of provinces considering whether there is high-speed

rail connecting them. Larger regression coefficients (βk) tell us that the industrial similarity of the pairs of provinces

connected by high-speed rail increased with respect to those that remain unconnected.

The results of Eq. (9) are shown in Figure 8A. Before the introduction of high-speed rail (1997-2005), there is no

temporal trend in βk. After the introduction of high-speed rail (2005-2015), the effect of the treatment (βk) begins to

increase significantly, meaning that the treated provinces grew more similar after high-speed rail was introduced (see

Figure S12 for additional robustness check).
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Figure 8: Industrial similarity and the introduction of high-speed rail. (A) Event study results. The y-axis shows the regression coefficient (βk in

Eq. (9)) as a function of the year, after regressing the industrial similarity of pairs of provinces that were eventually connected by high-speed rail

against the entry of high-speed rail. Red lines are linear fits for 1997-2005 and 2005-2015. (B) Differences-in-differences (DID) results. The y-axis

is the average industrial similarity of all pairs of provinces connected by high-speed rail (in red) or not connected by high-speed rail (in blue). The

value of DID (in green) is 0.029, and it is statistically significant. Vertical dash lines mark the years after speed-up campaigns, besides which the

approximate average speeds of high-speed rail are shown.

Next, we validate these results using differences-in-differences and the following specification:

ϕi, j,t = β0 + β1(Treati, j ∗ A f tert) + β2Treati, j + β3A f tert + AX′ + εi, j. (10)

Here, ϕi, j,t is the industrial similarity between provinces i and j at year t, and εi, j is the error term. Treati, j ∗ A f tert

is the DID term, where the dummy Treati, j denotes whether provinces i and j are affected by the introduction of

high-speed rail. A f tert denotes whether it is before or after high-speed rail entry for each year t. The vector X denotes

other control variables, which include gravity considerations, such as the difference between population, GDP per

capita, urbanization, and trade, among province pairs.

Figure 8B summarizes the results of the DID analysis studying the effect of high-speed rail on industrial similarity.

The DID (in green) between treatment group (in red) and the expected trend from the control group (in dashed black

line) is 0.029, indicating that pairs of provinces became more industrially similar after the introduction of high-speed

rail. The first three columns of Table 4 present the results of the DID regressions while controlling for differences

in the level of population, GDP per capita, urbanization, and trade, among these pairs of cities (see Table S4 for

summary statistics of covariates). The regression coefficient (β1) of the interaction term (Treati, j ∗ A f tert) is positive
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Table 4: DID regressions considering the effect of high-speed rail entry on the industrial similarity and the productivity of industries.

Independent Variables

DID Regressions Using OLS Model

Industrial Similarity Productivity

(1) (2) (3) (4) (5) (6)

High-speed Rail Entry
0.0290* 0.0266* 0.0268* 98713*** 107343*** 105636***

(0.0152) (0.0150) (0.0152) (27649) (27211) (26011)

Treatment Group
0.0637*** 0.0565*** 0.0588*** 39135** 30463* 26796

(0.0107) (0.0110) (0.0108) (16240) (17033) (17379)

After Entry
0.0498*** 0.0466*** 0.0506*** 364939*** 376791*** 361501***

(0.0091) (0.0091) (0.0090) (17603) (17362) (16524)

∆ Population (log)
-0.0204*** -6881

(0.0049) (8767)

∆ GDP per capita (log)
-0.0207** 109114***

(0.0081) (17389)

∆ Urbanization
0.0160*** 213686***

(0.0127) (33900)

∆ Trade (log)
-0.0068*** 20877***

(0.0024) (4615)

Observations 930 930 930 930 930 930

Robust R2 0.1628 0.1833 0.1689 0.4980 0.5223 0.5548

RMSE 0.1109 0.1097 0.1106 2.10 × 105 2.00 × 105 2.00 × 105

Notes: Data are for the year 2004 (before high-speed rail entry) and 2014 (after high-speed rail entry). Significant level: ∗p < 0.1, ∗ ∗ p < 0.05,

and ∗ ∗ ∗p < 0.01.

and significant, and it is robust to controls (see Table S5). These results suggest that the introduction of high-speed

rail had an effect on the increase of industrial similarity experienced by pairs of Chinese provinces.

Second, we examine the effect of high-speed rail on inter-regional learning by measuring the productivity of

industries. One may worry that the level of productivity is likely to rely on the industrial structure of provinces.

However, the correlation coefficients between productivity and industrial similarity are neither high nor consistent over

time, allowing us to explore the effect of high-speed rail on productivity as a separate observation (see Figure S13).

Similar to what we did with before, we measure the productivity density of active neighboring provinces as the

average productivity of neighboring provinces weighted by distance. The productivity density of an industry in a

province (ζiα) tells us if industry α in province i is surrounded by provinces that are active and productive in that

industry:

ζi,α,t =
∑

j

p̄i, j,α,t

Di, j

/

∑

j

1

Di, j

, (11)

Here p̄i, j,α,t is the average productivity of provinces i and j in industry α at year t, and Di, j is the geographic distance

between provinces i and j. The productivity p̄ of industry α in province i is its labor productivity, measured as revenue

per worker, i.e., the total revenue of industry α in a province i divided by the total number of employees working in
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Figure 9: (A) Productivity of provinces as a function of the density of neighboring province productivity five years before. Bars indicate average

values and error bars indicate standard errors. Results show averages for 2005-2014 using five-year intervals. (B) Average productivity of province

pairs connected with high-speed rail (treatment, in red) and without high-speed rail (control, in blue). The differences-in-differences (DID, in

green) is CNY 98,713 (∼USD 15k). Vertical dash lines mark the years after speed-up campaigns, besides which the approximate average speeds

of high-speed rail are shown.

that industry α in that province i.

We use this density estimator (ζ) to explore whether industries tend to be more productive when they are in

provinces that are surrounded by neighbors that are productive in that industry. Figure 9A shows that the average

productivity of an industry in a province increases with the productivity density of neighboring provinces. Once

again, we find an increasing and convex relationship.

Finally, we analyze the effects of high-speed rail on the average productivity of the industries in a province using

differences-in-differences. Like before, we check the pre-trend of average productivity (see Figure S14A), and find

there is no pre-trend (supporting the use of DID). For this DID analysis we modify Eq. (10) by replacing the industrial

similarity ϕi, j with the average productivity p̄i, j between pair of provinces i and j. Figure 9B shows a graphical

summary of the DID analysis using average productivity. The DID (in green) between treatment group (in red) and

control group (in blue) is CNY 98,713 (∼USD 15k), meaning that workers in pairs of industries linked by high-speed

rail increased their productivity, on average, by CNY 98,713 more than province pairs not connected by rail (see

Figure S14B).

Finally, we present our differences-in-differences analysis for productivity and the instroduction of high-speed rail
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in the last three columns of Table 4. Here we find that the interaction term (High-speed Rail Entry) is positive and

significant, and it is robust to controlling for differences in population, GDP per capita, urbanization, and trade. These

results support the idea that the introduction of high-speed rail promoted learning, since the productivity of industries

increased in the provinces that were connected by rail to provinces with productive firms in that industry.

4. Conclusion and Discussion

In this paper we explored the expansion of the Chinese economy between 1990 and 2015 by looking at the

industrial diversification of Chinese provinces. First, we explored inter-industry learning by constructing the industry

space, and showed that the probability that an industry will emerge in a province increased with the number of related

industries already present in it. Next, we explored inter-regional learning and used geographic data to show that the

probability that an industry will emerge in a province increases with the presence of the same industry in neighboring

provinces. Then, we combined both of the results to study whether inter-industry and inter-regional learning reinforce

each other, and found that the combination of the two learning channels exhibit diminishing returns, meaning that

when one learning channel (inter-regional or inter-industry) is sufficiently active, the other channel does not contribute

as much. That also implies that inter-regional learning and inter-industry learning are substitutes, or that learning is

constrained by the absence of a single learning opportunity.

Moreover, we use the introduction of high-speed rail between provinces as an instrument to address endogenity

concerns and provide evidence in support of the inter-regional learning hypothesis. We study how the introduction

of high-speed rail affected the industrial similarity of the provinces connected by rail and the productivity of firms

using differences-in-differences (DID). First, we show that the introduction of high-speed rail significantly increased

the industrial similarity of the pairs of provinces connected by rail. Second, we compare the average productivity

of industries that were present in pairs of neighboring provinces that became connected by rail, with that of pairs

of neighboring provinces where these industries were present, but did not become connected by rail. We found that

the average productivity of pairs of neighboring provinces that were connected by rail increased in the presence of a

productive neighbor in that industry. These results provide evidence in support of inter-regional learning theories.

While encouraging, our results should be interpreted in the light of their limitations. For instance, the observed
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presence of new industries is limited to those with revealed comparative advantage in a province, instead of industries

with a large absolute number of firms. That means industries without revealed comparative advantage are considered

absent in our context, which can be a potential limitation. Also, our data and geographic resolution are limited. On the

one hand, our data captures firms listed in China’s two major stock markets (Shanghai and Shenzhen), which represent

only a small fraction of all Chinese firms. Therefore, it is biased towards larger firms, since larger firms are more likely

to be publicly listed. Moreover, some firms not listed or listed outside of China are not included even though they

are located and operating in China. On the other hand, the use of provinces is also not ideal. Chinese provinces are

relatively larger administrative units, some of which concentrate more than 100 million people. Improving the spatial

resolution of this analysis would be an important improvement.

While we provide evidence in support of collective learning at the macro level, we do not provide a micro-channel

for that learning. Is this learning the result of spin-off companies? Migrant workers? Supply and demand externalities?

Labor market pooling? Or other channels? These micro level explanations are important, but escape the scope of this

paper.

Nevertheless, the evidence presented here helps expand the body of literature supporting the idea that economic

development is a learning rather than an accumulation process, and that learning is deeply path dependent, as it is

affected by the presence of related industries and the industrial development of neighbors. This should be good news

for developing countries looking to modernize their planning and economic development efforts. We hope this paper

helps stimulate the study of collective learning in economic development, and also that it helps inspire new research

to identify specific learning channels.
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Collective Learning in China’s Regional Economic Development

(Online Appendix)

Jian Gao, Bogang Jun, Alex “Sandy” Pentland, Tao Zhou, César A. Hidalgo

1. China’s firm data

We use firm data from China’s stock market extracted from the RESSET Financial Research Database, which is

provided by Beijing Gildata RESSET Data Tech Co., Ltd. (http://www.resset.cn), a leading provider of economic

and financial data in China. Our data set covers 1990-2015, a period during which China achieved rapid industrial

development. This data set provides some basic registration information of publicly listed firms in Chinese stock

exchanges, such as listing date, delisting date, registered address, industry category, yearly total revenue, and yearly

number of employees. Although the numbers of newly listed and delisted firms in each year fluctuates, the overall

number of firms increases almost linearly with time, as depicted in Figure S1. The registered addresses of firms cover

31 provinces in China. All these listed firms in our data set are aggregated into two levels, 18 categories and 70

subcategories. These categories are based on the “Guidelines for the Industry Classification of Listed Companies”
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Figure S1: Number of firms which are listed, delisted and subsisting in each year. (A) Number of newly listed firms. (B) Number of newly delisted

firms. (C) Number of subsisting firms, i.e., the cumulative number of listed firms which is not delisted yet.
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issued by the China Securities Regulatory Commission (CSRC) (http://www.csrc.gov.cn) in 2011. CSRC category

and CSRC subcategory codes as well as their associated industry names can be found in Figure S2.

We aggregate those listed firm into two levels (see Figure S2), which are sectoral and sub-sectoral level based

on the “Guidelines for the Industry Classification of Listed Companies”, which was issued by the China Securities

Regulatory Commission (CSRC) in 2011. In this aggregation of firms into two levels, we consider the economic

activities of listed firms with respect to the “Industry Classification for the National Economy (GB T4754-2011)”. In
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Figure S2: The codes of industry after the aggregation of firms into two levels: sectoral and sub-sectoral level. The inside layer corresponds to the

sectoral level, while outside layer shows the sub-sectoral level. Here, we don’t list all the sub-sectoral level.
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the code of categories, which is depicted in Figure S2, alphabet letters represent the sectoral level, while two-digit

numbers represent the sub-sectoral level. To reduce noise, we only examine sub-sectoral level in which more than

three firms are listed. After the aggregation, there are 2690 firms, as a total number of firms, that operate in 18

industries at sectoral level and 70 industries at sub-sectoral level.

2. Distance, travel time, and macroeconomic indicators

Regarding inter-regional learning, we use three distance metrics: geographic, driving, and neighboring distance

(see Table S1). We define the geographic distance (Di, j) between provinces i and j as a geodesic distance between

the capital cities of the two provinces. The driving distance (Vi, j) is the shortest route between the capital cities of the

two provinces, according to Google Maps API in 2015. The neighboring distance Bi, j is defined as the least number

of provinces that one province has to cross in order to reach another province. For example, the neighboring distance

between Beijing and Shandong is two (Bi, j = 2), because one has to cross at least two provinces to reach each other.

Regarding travel time, we consider three measures of it: transit, normal-train and driving time. The transit time is

defined as the shortest time by high-speed trains. If there is no high-speed train on the whole route even by transfer,

the shortest travel time by normal-train is used as an alternative. In this paper, the high-speed rail passenger trains

refers to trains with code starting with “G”, “C”, and “D”, while that of the normal-train staring with “Z”, “T”, “K” or

Table S1: Summary statistics of related economic indicators.

Variable Description Unit Obs Min Max Mean Std. Dev.

A. Province Level

Population Resident population at year-end 10k person 31 3.18 × 102 1.07 × 104 4.40 × 103 2.80 × 103

GDP per capita Per capita gross domestic product 1 CNY/person 31 2.64 × 104 1.05 × 105 5.07 × 104 2.21 × 104

Urban Area Total urban area in a region 1 sq.km 31 3.62 × 102 2.13 × 104 5.94 × 103 5.17 × 103

Land Area Total land area in a region 1 sq.km 31 6.34 × 103 1.66 × 106 3.11 × 105 3.87 × 105

Trade Total value of imports&exports 1k USD 31 6.20 × 105 1.24 × 109 1.39 × 108 2.51 × 108

B. Province-pair Level

Geographical Distance Between two capital cities 1k km 465 114 3559 1369.4 723.0

Driving Distance Between two capital cities 1k km 465 139 4883 1740.9 962.3

Neighboring Distance Number of regions crossed / 465 1 6 2.9 1.3

Transit Time Shortest travel time by transit 1 h 465 0.6 71 19.8 14.2

Normal-train Time Shortest travel time normal-train 1 h 465 1.6 71 25.5 14.3

Driving Time Shortest travel time by driving 1 h 465 1.9 59 19.4 11.5

∆ Population (log) Difference in resident population / 465 0.0071 3.5182 0.9330 0.7650

∆ GDP per capita (log) Difference in GDP per capita / 465 0.0000 1.3815 0.4502 0.3316

∆ Urbanization Difference in urban area/land area / 465 0.0053 262.31 7.4503 20.973

∆ Trade (log) Difference in imports&exports / 465 0.0058 7.6024 1.9055 1.4401

Notes: The summary statistics of macroeconomic data, distance metrics and travel time measures are in 2014, 2015 and 2015, respectively.
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using just numbers. The driving time is the shortest time when one travels between capital cities of the two provinces

by drive. We estimate the driving time using the Google Maps API in 2015. The introduction of high-speed rail

between two provinces was identified by using the Google Maps API in 2015 considering the accessibility between

the two capital cities through high-speed rail passenger trains.

We collect macroeconomic data at the province-level, including Gross Domestic Product per capita (GDP per

capita), population, total value of imports and exports, urban area, and total area (see Table S1). The level of urban-

ization is defined as the share of urban area in a province. All of these macroeconomic indicators are from “China’s

Statistical Yearbooks”, which are published by the National Bureau of Statistics of China (http://www.stats.gov.cn).

These macroeconomic indicators cover the 1990-2015 period and 31 provinces.

Table S1 shows the brief descriptions and summary statistics of distance metrics, travel time measures, and

macroeconomic indicators. At province level, we illustrate Population, GDP per capita, Urban Area, Land Area

and Trade in 2014. At province-pair Level, we illustrate Geographical Distance, Driving Distance, Neighboring Dis-

tance, Transit Time, Normal-train Time and Driving Time in 2015, while ∆ Population (log), ∆ GDP per capita (log),

∆ Urbanization, and ∆ Trade (log) in 2014.

3. Representation of industry space

We build a “province-industry” bipartite network G = {P, I, E} to connect provinces and industries (see Figure S3),

where P is the set of provinces, I is the set of industries at sub-sectoral level, and E is the set of links. The weight of

link xi,α is the number of firms in province i that operate in industry α. In the following, i and α indicate province-

related and industry-related indices, respectively.

To visualize the network of industry, we build a industry space using a proximity matrix Φ, which is associated

with the similarities between each pair of industries at the sub-sectoral level. There are three steps in building the

industry space: (i) First step is to build a maximum spanning network, as shown in Figure S4A. We calculate the

maximum spanning tree so that all nodes becomes reachable in the network with minimum number of links. This

network includes 69 links that ensures the connectivity and maximizes the total proximity. (ii) Then, we build a

maximum weighted network, depicted in Figure S4B, using only links of which weight exceeds a certain threshold

φ′. We set the threshold φ′ as 0.81, under which the network includes 116 links and provides a distinguishable final
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The weight of link xi,α corresponds to the number of firms in province i that belong to industry α.
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Figure S4: How to construct the industry space.(A) The first step: Building a maximum spanning network. (B) The second step: building a

maximum weighted network with φ > 0.81. (C) The last step: Building a superposed network by combining the maximum spanning network and

the maximum weighted network. (D) Layout of the product space, using a ForceAtlas2 algorithm in Gephi. (E) The final outcome: the industry

space. The color of nodes corresponds to 18 industries at sectoral level. The size of nodes is proportional to the number of listed firms in that

industry. The color and weight of links is associated with the φ value between two industries.

visualization. (iii) Last, we combine these two networks, which are the maximum spanning network and the maximum

wighted network, to build a superposed network (Figure S4C). After the last step, the network includes 145 links and

70 nodes, which represent 70 industries at sub-sectoral level.

To make a better network visualization, we use a ForceAtlas2 algorithm of Gephi (http://gephi.github.io) in laying

5
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Figure S5: (A) Hierarchically clustered matrix based on the original proximity matrix (Φ). The colors indicate the value of proximity. (B) The

distribution of the proximity in matrix Φ. The proximity matrix is calculated based on data in year 2015.

out the superposed network. ForceAtlas2 is a force directed layout, which places each node with consideration of the

other nodes and allow to avoid overlapping links and untangle dense clusters. Figure S4D shows the layout of industry

space. After preparing the skeleton, we adjust the size of nodes according to the number of firms in that industry at

the sub-sectoral level,and color each nodes according to the industries at the sectoral level. Likewise, we adjust the

thickness and color of links according to the proximity. Finally, the industry space is depicted in Figure S4E. The data

of 2015 is used for the visualization of industry space.

Regarding the proximity, Figure S5A represents the proximity matrix Φ in a way of a hierarchically clustered

matrix. The matrix shows two big modules and some small modules, supporting the existence of two density cores in

industry space. Figure S5B describes the density distribution of the proximity values in matrix Φ. We can see that the

vale of proximity follow a normal-like distribution with its average value around 0.5.

4. Robustness check of inter-industry learning

To check the robustness of inter-industry learning, here we also explore the relationship between the density of

active related industries and the present of new industries in provinces. Figure S6A presents the relationship between

the number of industries, in which provinces have a revealed comparative advantage, and the number of new industries,

in which provinces have developed a comparative advantage five years in the future. Using China’s stock market data,

we count the number of industries in year 2001 and check to see if new industries emerge five years in the future by
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Figure S6: (A) Relationship between active industries at time t and new active industries at time t + 5 for provinces. (B) Relationship between the

average density of active industries at time t and new active industries at time t + 5 for provinces. Results average for 2001-2015 using five-year

intervals. Abbreviations of province names are shown in Table S2.

looking at year 2006, and repeat this pattern over 2001 to 2015. More specifically, we will check the pairs of years

(2002, 2007), (2003, 2008), ..., (2010, 2015).

In Figure S6A, each dot represents each province of which value in horizontal-axis is corresponding to the average

number of current industries with RCA > 1 at year t in time pairs in the period (2001-2015). The value in vertical-axis

is corresponding to the average number of new industries with RCA > 1 at time t+ 5 in time pairs, in which provinces

didn’t have a comparative advantage (i.e., with RCA < 1) at the beginning (t) but developed a revealed comparative

advantage (i.e., with RCA > 1) five years later (t+5). There is a positive relationship between the number of industries

in which a province has RCA > 1 and the number of new industries in which the province diversified into five years

later.

Figure S6B presents the relationship between the average density in the industries with RCA < 1 and the number

of new industries in which a province develops a comparative advantage within five years. It shows strong positive

relationship suggesting that the number of new industries is highly correlated with the density of related industries

with RCA < 1 five years before. In other words, the average density in industries with RCA < 1 predicts the number

of new industries that a province will diversify into in the future. See Table S2 for abbreviations of province names.

To test the robustness of result seen in Figure 3 in the main text, we use a time-varying proximity (φα,β,t) in
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Table S2: Abbreviations of province names in China.

ID Province Name Code ID Province Name Code ID Province Name Code

1 Beijing BJ 12 Anhui AH 23 Sichuan SC

2 Tianjin TJ 13 Fujian FJ 24 Guizhou GZ

3 Hebei HE 14 Jiangxi JX 25 Yunnan YN

4 Shanxi SX 15 Shandong SD 26 Tibet XZ

5 Inner Mongolia NM 16 Henan HA 27 Shaanxi SN

6 Liaoning LN 17 Hubei HB 28 Gansu GS

7 Jilin JL 18 Hunan HN 29 Qinghai QH

8 Heilongjiang HL 19 Guangdong GD 30 Ningxia NX

9 Shanghai SH 20 Guangxi GX 31 Xinjiang XJ

10 Jiangsu JS 21 Hainan HI

11 Zhejiang ZJ 22 Chongqing CQ
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Figure S7: (A) Distribution of the density of active related industries for each pair of provinces and industries. The pink distribution focuses only

on pairs of provinces and industries that developed revealed comparative advantage in the next five years. The blue distribution is for the pairs of

industries and provinces that did not develop revealed comparative advantage. The mean of the pink distribution is significantly larger than that of

the blue distribution (ANOVA p-value < 0.01. (B) Probability that a new industry will appear in a province as a function of the density of active

related industries (ω). Bars indicate average values and error bars indicate standard errors. Results show averages for 2001-2015 using five-year

intervals. The density ω in Eq. 3 in the main text is calculated using a time-varying industrial proximity (φα,β,t).

the main text when calculating the density of related industries in Eq. (3) in the main text. Again, we use China’s

stock market data with five years interval. Figure S7A shows the distribution of related industry densities for pairs of

industries and provinces that developed revealed comparative advantage (in pink) and that did not develop revealed

comparative advantage (in blue) within five years. We find that the average related industry density for the pairs of

industries and provinces in which developed revealed comparative advantage is significantly larger (ANOVA p-value

< 0.01). Figure S7B shows an increasing and convex relationship meaning that the probability that an industry will

develop revealed comparative advantage in a province increases strongly with the density of related industries that are

already present in that province. These results provide robustness check of inter-industry learning.
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5. Robustness check of inter-regional learning
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Figure S8: Evolution of the presence of industries in China between 1992 and 2015. Four illustrated industries are Chemical Products Manufac-

turing Industry, Pharmaceutical Industry, Electric Machinery Manufacturing Industry, and Wholesale Industry (the keys of labels correspond to

Figure S2. The saturation of the color indicates the number of firms.

To check the robustness of the observations in Figure 4 in the main text, we additionally show the spatial evolu-

tion of the presence of industries in Chinese provinces using the number of firms of that industry in that province.

Figure S8, for instance, presents the results of four industries: Chemical Products Manufacturing Industry, Pharma-

ceutical Industry, Electric Machinery Manufacturing Industry, and Wholesale Industry (the keys of labels correspond
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Figure S9: Relationship between industry similarity and (A) transit time, (B) normal-train time, (C) driving time, and (D) driving distance. Bar

charts with error bars correspond to average values with stand errors in bins. Blue dash lines are linear fits of the corresponding bar charts.

to Figure S2. The saturation of the color indicates the number of firms. In this figure, the provinces that have large

number of firms in an industry tend to be neighbors of provinces who already had a large number of firms in that

industry, supporting our main finding.

Further, we present other evidences on the negative correlation between geographic proximity and the industrial

similarity. More specific, in Figure S9 we show the industrial similarity is highly correlated with transit time (A),

normal-train time (B), driving time (C), and driving distance (D). We confirm that shorter travel time or closer distance

between two regions corresponds to more similar industrial structure between the two.

To test the robustness of the results on inter-regional learning that is depicted in Figure 6 in the main text, we

develop an alternative index to measure the density of active neighboring provinces. That is using neighboring distance
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Figure S10: (A) Distribution of the density of active neighboring provinces for each pair of provinces and industries. The pink distribution focuses

only on pairs of provinces and industries that developed revealed comparative advantage in the next five years. The blue distribution is for the pairs

of industries and provinces that did not develop revealed comparative advantage. The mean of the pink distribution is significantly larger than that

of the blue distribution (ANOVA p-value=7.3×10−36). (B) Probability of a province developing comparative advantage in an industry as a function

of the density of active neighboring provinces five years ago. Bars indicate average values and error bars indicate standard errors. Results show

averages for 2001-2015 using five-year intervals. The density Ωi,α,t in Eq. (S1) is weighted by neighboring distance Bi, j.

Bi, j to replace geographic distance Di, j when calculating the density of active neighboring provinces. Formally,

Ωi,α,t =
∑

j

U j,α,t

Bi, j

/

∑

j

1

Bi, j

. (S1)

Figure S10A shows the distribution of densities (Ω) for industry-province pairs that developed revealed compara-

tive advantage in an industry in a five-year period (in pink) and those who did not (in blue). We find that the average

density of active neighboring province for the pairs of industries and provinces that developed revealed comparative

advantage is significantly larger (ANOVA p-value=7.3 × 10−36). Figure S10B shows the increasing and convex rela-

tionship between the probability that a province will develop revealed comparative advantage in an industry and the

density of active neighboring provinces in that industry five years before.

6. Robustness check of inter-regional and inter-industrial learning

To check the robustness of our results in Figure 7 in the main text, we use an alternative index (ratio) to measure

the density of active neighboring provinces (Ω) and the density of related industries (ω). For provinces, the ratio is the

proportion of active neighboring provinces, and for industries, the ratio is the proportion of active related industries

according to the illustrated industry space in 2015. Figure S11A shows the joint probability of new industries present,
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Figure S11: (A) Joint probability of a province developing revealed comparative advantage in a new industry in a five-year period, given the ratio

of active neighboring provinces in horizontal-axis and the ratio of active related industries in vertical-axis. (B) and (C) are the corresponding

marginal probability distributions of new industries present, given the ratio of active related industries and the ratio of active neighboring provinces,

respectively.

given the ratio of active neighboring provinces and the ratio of active related industries. We can see that both ratios

have significant effects on the new industries present. For each single effect, the ratio of active related industries (see

Figure S11B) and the ratio of active neighboring provinces (see Figure S11C), the increasing and convex relation-

ship shows that the probability that an industry will develop revealed comparative advantage in a province increases

strongly with the ratio. These results support the robustness of our results.

Table S3 presents the summary statistics of regression variables that are used in econometrics considering both

inter-regional and inter-industry learning. Four different groups of metrics are included in the multivariable regres-

sions: density, ratio, number, and active number. Here, the density of active related industries, the number of related

industries, and the number of active related industries are all based on the illustrated industry space in 2015.

7. Robustness check of causal evidence for inter-regional learning

Figure S12A shows the effect of high-speed rail entry on industrial similarity by comparing province pairs with

(in pink) and without (in blue) high-speed rail lines. We find that the average value of industrial similarity between

province pairs that connected by high-speed rail is significant larger (ANOVA p-value=1.2 × 10−18). Figure S12B

shows the timing of high-speed rail entry in China and its effect on the industrial similarity of province pairs. We can
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Table S3: Summary statistics of regression variables in the analysis of the emergence of new industries.

Variable Observations Min Max Mean Std. Dev.

Density of Active Neighboring Provinces 25713 0 0.7127 0.1894 0.1551

Density of Active Related Industries 25713 0.0109 0.5939 0.2283 0.0866

Interaction Term 1 25713 0 0.3022 0.0453 0.0441

Ratio of Active Neighboring Provinces 25713 0 1 0.1816 0.2358

Ratio of Active Related Industries 25713 0 1 0.1949 0.2884

Interaction Term 2 25713 0 1 0.0457 0.1063

Number of Active Neighboring Provinces 25713 0 7 0.7935 1.0441

Number of Active Related Industries 25713 0 9 0.8448 1.2864

Interaction Term 3 25713 0 45 1.0833 2.9363

Number of Neighboring Provinces 25713 1 8 4.4463 1.8048

Number of Related Industries 25713 1 15 3.8851 3.3691

Interaction Term 4 25713 1 120 17.271 17.712

2004 2006 2008 2010 2012 2014 2016
0.20

0.25

0.30

0.35

0.40

0.45

Speed-Up Campaigns

A

2
0

0
k
m

/h

3
0

0
k
m

/h

1
2

0
k
m

/h

A
v
a
ra

g
e

In
d
u
s
tr

ia
l
S

im
ila

ri
ty

Year

High-speed Rail

No High-speed Rail

B

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.00

0.05

0.10

0.15

0.20

0.25

0.30

F
re

q
u
e
n
c
y

Industrial Similarity

High-speed Rail

No High-speed Rail

Figure S12: (A) Density distributions of industrial similarity for province pairs with (in red) or without (in blue) high-speed rail. Red and blue

curves are normal fits of the bar charts. The mean of the pink distribution is significantly larger than that of the blue distribution (ANOVA

p-value=1.2 × 10−18). (B) Average industry similarity between province pairs with (in red) or without (in blue) high-speed rail.

see that the average industrial similarity increases remarkably after train speed-up in 2005, 2008 and 2012 (the years

after “speed-up” campaigns are used for illustration), suggesting the positive and significant effect of high-speed rail

on inter-regional learning. The average industrial similarity for province pairs with and without high-speed rail from

2004 to 2015 supports the robustness of these findings.

To provide additional evidence supporting inter-regional learning, we do differences-in-differences (DID) analysis

again but considering the productivity. First, we check the relationship between the industrial similarity and produc-

tivity for all pairs of provinces. One possible concern of our analysis is that the productivity of industries is directly

affected by their industrial structure since some industries may have higher productivity than others, and the industrial

structure that one province has may contribute to its productivity. In that case, the analysis of industrial similarity and
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Figure S13: (A) Average productivity of industries in descending order in 2014. The keys of industry categories correspond to Figure S2. (B)

Correlation coefficient between industrial similarity and productivity for all pairs of provinces for the 2000-2014 period.

productivity between pairs of provinces is not repetitively.

We find that even though different industries have different productivity (see Figure S13A for illustration in 2014),

the correlation between industrial similarity and productivity for all pairs of provinces is relatively small (see Fig-

ure S13B), meaning that industrial similarity and productivity are, to some extent, independent of each other, and

considering both of these two measures at the same time is valid.

For doing differences-in-differences (DID) analysis considering the productivity, once again, our data satisfies the

condition for DID method as the pre-trend of the dependent variable on the control and treatment groups is similar

prior to year 2005 (see Figure S14A). To demonstrate this, we do the event study by running the following ordinary

least-squares (OLS) linear regression model using data between 2000 and 2015 to predict the average productivity of

provinces i and j for each year as:

p̄i, j,α,t = β0 +

2015
∑

k=1997

βk(Treati, j ∗ 1{t = k}) + εi, j. (S2)

Here Treati, j is a dummy variable denoting whether provinces i and j are affected by high-speed rail entry, and 1{t = k}

is an event time indicator, which is equal to 1 for the year that we consider the effect of high-speed rail entry. In another

way, Eq. (S2) regresses the average productivity of pairs of provinces and whether there is high-speed rail connecting

them. Larger regression coefficient (βk) corresponds to higher productivity of pairs of provinces that connected by

high-speed rail than that not.

14



2000 2005 2010 2015
0.0

5.0x10
4

1.0x10
5

1. x10
5

2004 2006 2008 2010 2012 2014

.0x10
5

1.0x10
6

1. x10
6

BA
Speed-Up C��paigns

3
0

0

 
�
/�

2
0

0

 
�
/�

1
2

0
 
�
/�

R
e

g
re

s
s
io

n
 C

o
e

ff
ic

ie
n

t

Year

1
2

0

 
�
/�

3
0

0

 
�
/�

2
0

0

 
�
/�

Speed-Up C��paigns

High-speed Rail

No High-speed Rail

A
v
e

ra
g

e
 P

ro
d

u
c
ti
v
it
y

Year

Figure S14: (A) Event study results. The y-axis shows the regression coefficient (βk in Eq. (S2)) as a function of the year, after regressing the

average productivity of pairs of provinces that were eventually connected by high-speed rail against the entry of high-speed rail. Red lines are

linear fits for 2000-2005 and 2005-2015. respectively. (B) Average productivity of province pairs with (in red) or without (in blue) high-speed rail

between 2004 and 2014.

Table S4: Summary statistics of variables in difference-in-difference (DID) analysis. Mean values of industrial similarity, average productivity, and

differences in population (log), GDP per capita (log), urbanization and trade (log) between province pairs before and after the entry of high-speed

rail are shown.

Independent Variables

Before After

DIDControl Treatment Control Treatment

Industrial Similarity 0.2496 0.3133 0.2994 0.3921 0.0290

Productivity 5.21 × 105 5.60 × 105 8.86 × 105 10.24 × 105 0.99 × 105

∆ Population (log) 1.1394 0.7314 1.0953 0.6514 -0.0358

∆ GDP pc (log) 0.5717 0.6255 0.4603 0.4327 -0.0814

∆ Urbanization 0.1066 0.2115 0.1098 0.2151 0.0005

∆ Trade (log) 2.0719 1.5899 2.2047 1.3863 -0.3365

Observations 295 170 295 170 930

Figure S14A illustrates the results of event study regression coefficient (βk) based on productivity after taking 2005

as the baseline year. Before the high-speed rail entry (1997-2005), the effect of the treatment is similar as there is no

significant trend in βk. After the high-speed rail entry (2005-2015), however, the effect of the treatment (βk) begins to

increase significantly, meaning that the treated province pairs became more productive only after the introduction of

high-speed rail. Figure S14B presents the the average productivity of province pairs that connected by high-speed rail

ans these not. It can be seen that, province pairs that connected by high-speed rail have significant larger productivity

for the whole considered period.

Table S4 shows the summary statistics of variables that are used in the differences-in-differences (DID) analysis.

In our DID design, province pairs belong to the treatment group if they are connected by high-speed rail in 2014,
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Table S5: DID regressions considering the effect of high-speed rail entry on the industrial similarity and the productivity of industries with

controlling for the geographic distance between provinces.

Independent Variables

DID Regressions Using OLS Model

Industrial Similarity Productivity

(1) (2) (3) (4) (5) (6)

High-speed Rail Entry
0.0290* 0.0270* 0.0274* 98713*** 107032*** 105193***

(0.0151) (0.0150) (0.0151) (27644) (27237) (26044)

Treatment Group
0.0504*** 0.0455*** 0.0473*** 52294*** 40611** 34883*

(0.0112) (0.0114) (0.0113) (16948) (17528) (17923)

After Entry
0.0498*** 0.0470*** 0.0504*** 364939*** 376375*** 361673***

(0.0089) (0.0089) (0.0089) (17498) (17261) (16491)

Distance (log)
-0.0297*** -0.0261*** -0.0278*** 29265** 24052** 19635*

(0.0069) (0.0069) (0.0070) (11579) (11401) (10927)

∆ Population (log)
-0.0182*** -8902

(0.0048) (8774)

∆ GDP per capita (log)
-0.0176** 106183***

(0.0081) (17249)

∆ Urbanization
0.0146 214723***

(0.0130) (33949)

∆ Trade (log)
-0.0049** 19564***

(0.0024) (4635)

Observations 930 930 930 930 930 930

Robust R2 0.1826 0.1983 0.1859 0.5013 0.5245 0.5563

RMSE 0.1096 0.1087 0.1095 2.10×105 2.00×105 2.00×105

Notes: Data are for the year 2004 (before high-speed rail entry) and 2014 (after high-speed rail entry). Significant level: ∗p < 0.1, ∗ ∗ p < 0.05,

and ∗ ∗ ∗p < 0.01.

otherwise belong to the control group. In the DID regressions, control variables include gravity considerations: the

difference between population, GDP per capita, urbanization (defined as share of urban area over the entire area of a

province), and trade (defined as total exports and imports of each province).

To check the robustness of our results in Table 4 in the main text, we additionally control for the geographic

distance between provinces in the DID analysis to reduce sampling bias. As shown in Table S5, we find that the

estimates of the effects of high-speed rail entry are also significant and robust in the presence of controlling geographic

distance, supporting the causal evidence of high-speed rail entry on inter-regional learning.
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