
The improvements of data acquisition and 
processing capabilities, as well as artificial 
intelligence and statistical mechanics, 
have rapidly and significantly changed 
the methodology of social and economic 
research. The recent paradigm shifting of 
social science driven by big data and artificial 
intelligence provides promising and novel 
data-driven methods for measuring the 
progress of Sustainable Development Goals 
(SDGs). This shift affects areas ranging from 
no poverty to good health and well-being, 
from gender equality to quality education, 
and from economic growth to innovation 
and infrastructure. Governments at both 
national and regional levels can benefit from 
leveraging new methods under the framework 
of Computational Socioeconomics1 to better 
assess their progress towards sustainable 
development over space and time with a 
higher efficiency and a lower cost.

New Methodology Shifts

Social and economic studies become 
increasingly dependent on real data. Yet, the 
traditional way to obtain real data has many 
limitations. For example, larger-scale and 
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more precise data usually consumes huge 
resources and lacks timeliness. Fortunately, 
thanks to the digital wave that swept across 
the world in recent decades, social and 
economic researchers face an unprecedented 
opportunity to develop a quantitative 
methodology.

Data in the processes of socioeconomic 
development and human activities are 
recorded by an increasing number of sensing 
devices, online platforms, and other data 
acquisition terminals such as remote-sensing 
satellites, mobile phones, social media 
platforms, and online trading platforms.2, 3 On 
the other hand, these data are of larger size, 
almost in real time and with higher resolution, 
can reduce the sparsity and bias in small-size 
data as well as reduce the invisible parts in 
the developing processes. Therefore, based 
on these large-scale novel data, we can in 
principle make great progress in perceiving 
socioeconomic situations, evaluating 
development progresses, predicting future 
social and economic trends, and so on.4

The increasing volume and diversity of novel 
data lead to methodological changes in two 
aspects. Firstly, simple statistical tools are not 
suitable for analyzing unstructured data such 
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as street view images and textual contents. 
Researchers are in serious need of more 
advanced techniques of data mining and 
machine learning.5 Secondly, with population-
scale data, one can concentrate on a small 
sampled subset and add high-valued new 
dimensions of data. 

New data dimensions can be obtained through 
traditional means such as a questionnaire 
survey. A model can be trained based on the 
small sample to infer new dimensions from 
the original ones. After applying the model to 
the whole dataset, one can obtain new data 
dimensions for all individuals. 

This method integrates some routine methods 
like sampling, labeling, and surveying, while it 
is more powerful in practice. For example, it is 
relatively easy to obtain the population-scale 
data on mobile communication and mobility, 
while it is very hard to know the household 
income of every family without compiling a 

Figure 1. Illustration of 
ensembling novel data 
in the computational 
socioeconomics framework. 
© Gao, Zhang & Zhou. 
Physics Reports, 2019

population-scale economic census. Under 
the new framework, we first obtain household 
incomes of some families via routine 
questionnaires. Then, using the small dataset, 
we train machine learning models to predict 
household income of a family based on the 
mobile phone data of the family members. 

Although the inferred data is not perfect, it can 
be very close to the real data under a certain 
well-designed algorithm. Notice, a significant 
advantage is that the high-value data for 
almost every individual can be obtained at 
a very low cost. Combining the accessible 
population-scale data, a small sample of high-
value but hard-to-get data, and a properly 
selected or well-designed algorithm to infer 
the high-value data for individuals other than 
the sample is a novel and representative 
method in the computational socioeconomics 
study (Figure 1), showing the deep integration 
of social science and computer science 
methods.
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Nowcasting Poverty and 
Growth

Revealing the status of social and economic 
development in a near real-time manner and 
with a lower cost is one of the long-standing 
problems that hinders the effects towards 
Sustainable Development Goals (SDGs). To 
approach the goals of no poverty, the first step 
is to accurately map the spatial distribution 
of poverty. New data and tools introduced 
in computational socioeconomics have been 
utilized to better reveal, explain and predict 
global poverty and economic growth, such 
as data from remote sensing (RS) and mobile 
phone (MP).

High resolution data from RS, for example, 
nighttime lights (NTLs) satellite imagery, 
has been used to supply information about 
economic activity, especially in developing 
countries where traditional economic census 
data are insufficient. NTLs data can provide 
an unambiguous indication of the spatial 
distribution of economic development. For 
example, Jean et al.6 applied deep learning 
algorithms to learn the relationship between 
NTLs and daytime satellite imagery. The 
former can predict the wealth distribution 
while the latter contains rich information 
about landscape features. The image 
features extracted from the daytime imagery 
can explain up to 75% of the variation in the 
average household asset across five African 
countries. Moreover, the method is able 
to reconstruct survey-based indicators of 
regional poverty with high accuracy.

MPs are able to capture an enormous 
information and provide cost-effective data at 

the individual level. With MP logs related to 
consumption and expenditure, socioeconomic 
status can be inferred by employing machine 
learning approaches at the aggregated 
subnational and national levels. For example, 
Blumenstock et al.7 presented a novel method 
to explore the relationship between MP 
usages and wealth in developing countries. 
By analyzing the data from Rwanda, they 
found that household expenditures are 
positively correlated with MP usages, for 
instance, in the number of different districts 
contacted. Moreover, by applying a machine 
learning approach to analyze the follow-up 
phone surveys of some individual subscribers, 
Blumenstock et al.8 showed that individual 
wealth can be well predicted and individuals 
in relative poverty can be accurately 
identified. Then, they generated out-of-
sample predictions for 1.5 million MP users 
and produced the wealth map of Rwanda 
at a very high resolution and accuracy. This 
method is promising to map the distribution of 
wealth and other socioeconomic indicators for 
the full national population.

Understanding how economies develop to 
prosperity is a long-standing challenge in 
economic growth. Hidalgo and Hausmann 
9 proposed a novel index named economic 
complexity (ECI), a non-monetary metric which 
quantitatively assesses a country’s potential 
for future economic growth. In particular, a 
Method of Reflections (MR) is proposed to 
characterize the structure of ̀ `country-product’’ 
bipartite network in international trade and 
the variables produced by the MR method 
can be interpreted as indicators of economic 
complexity. Empirical results showed that 
countries’ ECIs are highly correlated with 
their income levels and are predictive of their 
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Moreover, individual behaviors 
on social networking 
platforms have been used to 
estimate individual personality 
and mental states such as 
depression and suicidal intent.

future growth. Later, a statistical approach 
is employed to define a new set of metrics 
and to quantify the fitness of countries and 
the complexity of products. Tacchella et al.10 
showed that this scheme outperforms the 
International Monetary Fund (IMF) five-year 
GDP per capita forecast by more than 25% 
in accuracy, and the method’s forecasting 
errors are predictable. These complexity and 
fitness measures have been used to quantify 
the economic complexity and development at 
different spatial resolutions, such as China’s 
regional economic complexity.11

Perception of Regions and 
Cities

High-resolution data and improved methods 
allow us to reveal economic activity and 
socioeconomic status in subnational, regional, 
and urban scales. For example, indicators 
derived from both nighttime lights (NTLs) 
and very high resolution (VHR) imagery have 
been used to map poverty at fine scales. In 
particular, novel data from mobile phone 
(MP) and Google Street Views provide a 
promising way to the perception of cities and 
communities.

Slums are common in low- and middle-income 
countries with poor quality of basic services 
(e.g., water supply, electricity, and sanitation). 
Detecting and monitoring slum areas is 
valuable for implementing policies to improve 
living conditions. Recently, VHR images have 
been increasingly used to inventory the 
location and physical composition of slums. 
For example, Kit et al.12 developed the concept 
of lacunarity to identify slums in Hyderabad, 
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India. The best method can reach an accuracy 
of 0.8333 in slum identification and can 
capture the changing patterns of slum areas 
from 2003 to 2010. Similarly, Kuffer et al.13 

utilized the gray-level co-occurrence matrix 
(GLCM) variance to distinguish slum areas in 
VHR imagery and showed that the overall 
accuracy can be increased to 90% by adding 
spectral information to the GLCM within a 
random forest classifier.

Social media (SM) data have been used 
to track socioeconomic well-beings. For 
example, based on the registered location 
information of nearly 200 million Weibo users 
in China, Liu et al. 14 explored the relationship 
between online activities and socioeconomic 
indices (Figure 2). They found that UN is 
strongly correlated with socioeconomic 
indices, suggesting that socioeconomic status 
can be inferred from online social activity 
at the city-level. Of particular significance, 
they further proposed a method to detect 
a few abnormal cities, whose GDP is much 

higher than others with the same number 
of registered users. Similarly, with data of 
friendship information and geo-locations from 
Gowalla in the US, Holzbauer et al.15 studied 
the relations between regional economic 
status and quantitative measures of social 
ties. They found that cross-state long ties 
are strongly correlated with three economic 
measurements, namely, GDP, the number of 
patents, and the number of startups.

Crowdsourcing methods and computational 
vision techniques have been used to measure 
livability, safety and inequality, to infer 
the status of urban life, and to quantify the 
changes of urban streetscapes. For example, 
Salesses et al.16 presented a method to 
measure the urban perception of safety, 
class, and uniqueness in two US cities and 
two Austrian cities based on hundreds of 
geotagged images. They found that the two 
US cities are perceptually more unequal, and 
that the spatial variation of urban perception 
helps explain violent crimes in NYC zones 

Figure 2. The spatial distributions of the intensities of online 
activity (A) and the values of GDP (B) in prefecture-level cities 
of China in 2012. © Liu et al. Physica A, 2016
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at zip-code resolution. Later, Naik et al.17 
trained a scene understanding model named 
Streetscore based on data from an online 
survey to predict the perceived safety of a 
streetscape using generic image features. 
Physical appearances of neighborhoods 
are not static but changing over time. Naik 
et al.18 introduced a computer vision method 
to understand physical dynamics of cities 
based on street views at different times. They 
found that education and population density, 
physical proximity to city centers, and better 
initial appearances are associated with 
physical improvements in neighborhoods. 

Deep-learning-based computer vision 
techniques have been applied to analyze 
digital imagery, which provides a faster and 
cheaper alternative of community survey. For 
example, Gebru et al.19 proposed a method 
to estimate socioeconomic trends from 50 
million street view images in 200 US cities. 
They automatically detected 22 million 
distinct vehicles from images using the object 
recognition algorithm and then deployed 
CNNs to determine features of vehicles and 
classify each vehicle into one of the 2,657 
fine-grained categories. Using the resulting 
data, they estimated race and education 
levels by training a logistic regression model 
and estimated income and voter preferences 
by employing a ridge regression model. 
Compared to the American Community 
Survey, their demographic estimates exhibit 
satisfied accuracy at the city level. The 
method can also provide a good accuracy at 
a more fine-grained zip code resolution; for 
example, the estimation of the percentage of 
Asians yields a high correlation at zip code 
resolution for Seattle. 

Gender Equality and Social 
Segregation

Demographic attributes of individuals have 
remarkable effects on their socioeconomic 
status, while traditional methods of individual 
profiling based on surveys and censuses are 
costly and follow a long-time delay. Recently, 
data from novel sources such as social media 
(SM) and mobile phones (MPs) have been used 
alternatively to predict individual demographic 
attributes and to analysis social and religious 
segregations. Moreover, individual behaviors 
on social networking platforms have been 
used to estimate individual personality and 
mental states such as depression and suicidal 
intent. 

MP and online data have been used to 
infer demographic information – gender in 
particular. Frias-Martinez et al.20 analyzed 
call detail records (CDRs) and found that 
male and female users are significantly 
different in behavioral and social variables 
such as duration of calls and degree in 
social networks. They proposed a semi-
supervised classification algorithm that can 
identify gender with an accuracy up to 0.80. 
Felbo et al.21 developed a convolutional 
network architecture to transform MP data 
into high-level features for each week and 
then aggregated patterns across weeks by 
reusing the same convolutional filters. They 
designed a 2-step model using an SVM with 
a radial basis function kernel, which slightly 
outperforms the state-of-the-art method, with 
an accuracy 0.797 in gender prediction. On 
the exposure of online platforms to different 
genders, Mislove et al.22 inferred gender of 
Twitter users representing more than 1% of 
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the U.S. population based on their first names 
and found that 71.8% of the users had a male 
name, showing a strong gender bias of Twitter 
towards male users. On the height premium 
in labor market, Yang et al.23 found stronger 
effects of height premium on female than on 
male after analyzing a dataset covering over 
140,000 Chinese job seekers. Of particular, 
they found that the gender differences 
decrease as the education level increases 
and become insignificant after holding all 
control variables fixed.

By leveraging novel large-scale data, 
urban segregation of people with different 
socioeconomic status have been studied. 
For example, Shelton et al.24 developed 
an approach to study intra-neighborhood 
segregation, mobility and inequality based on 
geotagged tweets in Louisville. They proposed 
to understand Louisvillian neighborhoods 
by the fluid, porous, and actively produced. 
Similarly, Yip et al.25 analyzed the mobility 
patterns of people in Hong Kong that are 
tracked by a mobile phone app. They found 
that the interactions of people with other 
income groups are limited. Rich people tend 
to move to rich neighborhoods, while poorer 
people tend to move to poorer neighborhoods. 
Recently, Louf and Barthelemy26 provided a 
direct definition of residential segregation and 
showed that the richer class in high density 
zones is overrepresented. In particular, they 
suggested density as a relevant factor for 
understanding urban income structure and 
explaining differences observed in cities.

Data from social networks have been used 
to study religious segregation and urban 
indigenization. Hu et al.27 quantified religious 
segregation by analyzing religious social 

network based on Weibo. They found that the 
religious network is highly segregated, and the 
extent of religious segregation is higher than 
racial segregation. In addition, 46.7% of cross-
religion connections are probably related 
to charitable issues, suggesting the role of 
charitable activities in promoting cross-religion 
communications. Yang et al.28 identified 
the distinct mobility patterns of natives and 
non-natives in five large cities in China by 
analyzing about 1.37 million check-ins. They 
found that the distribution of location visiting 
frequencies is relatively homogeneous for 
natives as they usually check in repeatedly at 
locations of personal importance. By contrast, 
the distribution is more heterogeneous for non-
natives as they tend to visit popular locations. 
With this insight, Yang et al.28 proposed a so-
called indigenization coefficient to estimate 
the likelihood of an individual to be a native 
or to what extent an individual behaves like 
a native, which is based solely on check-in 
behaviors. Such method can be applied in 
estimating the time required for non-natives 
to behave the same as natives as well as in 
enhancing the prediction accuracy of human 
mobility.

Climate Action and 
Disaster Relief

Climate change and disaster surveillance 
is critical to social and economic systems. 
Along with increased urbanization and 
changing climate, many areas are now facing 
an unprecedented number of emergent 
events and natural disasters, which pose 
numerous threats to human life and economic 
development. 
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It urges rapid situational awareness and 
efficient management strategies to reduce 
human suffering and economic losses. In 
rural areas, assessments of natural hazards 
usually follow a delay, resulting in difficulties 
of disaster response and relief. In urban 
areas, detections of natural disasters (such 
as earthquakes, floods and hurricanes) are 
critical not only for governments’ rapid disaster 
response but also for in-depth understanding 
of human behaviors in extreme situations 
that will help in better designing strategies in 
disaster relief.

Novel data sources have been leveraged to 
improve emergency awareness and disaster 
management such as remote sensing (RS), 
mobile phone (MP), and social media (SM), with 
remarkable advantages of low acquisition 
cost, real-time updates and high spatio-
temporal resolutions. In particular, deep 
learning algorithms have been introduced to 
analyze RS data for rapid earthquake damage 
mapping. For the 2010 Haiti Earthquake, 
Cooner et al.29 evaluated the effectiveness of 

several deep learning algorithms in detecting 
earthquake damage. They found that spatial 
texture and structure features extracted 
from satellite images can detect damaged 
buildings with an error rate below 40% under 
a multilayer feedforward neural network 
framework. Similarly, Bai et al.30 developed 
a deep learning algorithm to map damage 
due to the 2011 Tohoku Earthquake-Tsunami. 
Their algorithm can classify damage with an 
overall accuracy 0.709 based on pre- and 
post-disaster images.

Rapid emergency detection based on mobile 
phone (MP) data can facilitate humanitarian 
response and reduce the toll of extreme 
events. Based on the combined data of MP 
activities and official event records in Rwanda, 
Dobra et al.31 proposed an efficient system that 
can detect days with anomalous behavioral 
patterns under many emergent and non-
emergent events. MP data have also been 
used to assess population displacements 
and improve emergency responses during 
large-scale disasters. For example, Lu et 

On the height premium 
in labor market, Yang et 
al found stronger e!ects 
of height premium on 
female than on male 
after analyzing a dataset 
covering over 140,000 
Chinese job seekers

FUTURE CITIES, NEW ECONOMY, AND SHARED CITY PROSPERITY 
DRIVEN BY TECHNOLOGICAL INNOVATIONS

37



al.32 explored the predictability of population 
displacements after the Haiti earthquake. They 
found that the population in PaP decreases 
by 23% in the three-month period after the 
earthquake due to population movements. 
Also, the destinations of people who left PaP 
during the first three weeks correlate well with 
their mobility patterns during normal times.

Social media (SM) is a valuable source of 
information for gaining situational awareness, 
detecting and locating emergent events, 
improving disaster response, and enhancing 
relief efforts. Indeed, the utilization of SM 
data has transformed the methodology of 
earthquake detection and early warning33, 
where the distribution of shakings can be 
mapped in minutes from earthquake-related 
posts. For example, Acar et al.34 studied 
earthquake information sharing on Twitter 
by analyzing the tweets posted near two 
disaster-struck areas during the 2011 Tohoku 
Earthquake. They found that people in 
directly affected areas tweeted to announce 
their uncertain and unsafe situation, while 
people in remote areas tweeted to inform 
followers that they are safe. SM data have 
been increasingly used in monitoring and 
mapping floods in a timely manner. For 
example, Arthur et al.35 leveraged tweets to 
detect and locate flood events in the UK. They 
collected tweets containing flood-related 
terms and located flood events by analyzing 
many indicators such as mentioned place 
names and GPS coordinates. They produced 
high-quality flood event maps based on the 
relevant geotagged tweets and validated the 
flood maps by official data.

SDG3: Good Health and 
Well-being

Ensuring the healthy lives and promoting 
well-being for all are the goals of the 
SDG3. With the coming of big data and the 
development economic, the last decade has 
made the significant strides in increasing the 
life expectancy and reducing the infant and 
maternal mortality rates. With the availability 
of various data sources, lots of data-driven 
model have been developed and major 
progresses have also made in preventing the 
spread of the communicable diseases, such 
as malaria, the seasonal influenza, and the 
pandemic, and so on. 

A report given by the Centers for Disease 
Control and Prevention (CDC) shows that, 
an average of 28.41 million cases, 461 111 
hospitalizations, and 40 500 influenza related 
deaths occur in each year from 2005 to 2018 
in the United States,36 which caused the 
economic burden at $5.8 billion annually. 
37  As the globular head of hemagglutinin 
is evolving continually, the efficacy of the 
seasonal vaccines depends on the match 
between the antigens included in the vaccine 
and those presented by circulating influenza 
strains. Sah et al38 assumed that if 10% of 
typical seasonal vaccines is replaced with 
75% efficacious universal vaccine, according 
to the data-driven model accounted for 
various data monitored by the CDC, they 
showed that about 5.3 million cases, 81 000 
hospitalizations, and 6300 influenza-related 
deaths per year would be averted. With the 
availability of the weekly temperature, relative 
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humidity and atmospheric pressure data for 
each city of 603 cities in the United States, 
Dalziel et al46 developed a climate-forced 
susceptible-exposed-infected-removed-
susceptible compartmental model for 
influenza epidemics. They find that the period 
of the influenza season in the smaller cities 
is shorter, and the city-level incidence data 
is positively correlated with population size , 
and further their study reveal that the urban 
centers incubate critical chains of transmission 
outside of peak climatic conditions, 
altering the spatiotemporal geometry of 
herd immunity. For the understanding and 
prediction of the epidemic, Liu et al.39 built a 
subset of the Italian and Dutch populations 
with the highly detailed sociodemographic 
data. By calibrating the epidemic model with 
the empirical epidemiological data, they 
show that the classical concept of the basic 
reproduction number is untenable in realistic 
populations. Litvinova et al.40 performed a 
diary-based contact survey estimating the 
patterns of social interactions before and 
during the implementations of reactive school-
closure strategies in the influenza season, and 
it is incorporated the macro sociodemographic 
data. With this innovative hybrid survey-
modeling framework, they showed that the 
gradual reactive school-closure policies can 
mitigate the spread of influenza.

The emergence of the innovative infectious 
diseases, such as the SARS epidemic of 2003, 
the 2009 H1N1 influenza, and most recently 
the 2019_nCoV, affects the lives of tens of 
thousands or even millions of people. As 
the absence of the vaccine for the emergent 
infectious diseases and the globalization, the 

highly virulent innovative diseases increase 
the risk of every city in the world being 
invaded. Brockmann et al.41 based on the 
air-traffic data defined the effective distance 
which predicts the disease arrival times of the 
invaded city accurately. Their method also 
works well for both the worldwide 2009 H1N1 
influenza pandemic and 2003 SARS epidemic. 
Zhang et al.42 developed a data-driven global 
stochastic epidemic model, accounted for 
the real-world demographic, human mobility, 
socioeconomic, temperature, and the vector 
density data, for the spread of the Zika virus 
(ZIKV) in the Americas. They estimate the 
time of first introduction of ZIKV to Brazil, and 
also revealed that the spreading features of 
ZIKV. For the new coronavirus originated in 
Wuhan, China, Chinazzi et al.43 developed 
a detailed individual based mobility model 
which covers more than 3300 subpopulations 
in about 190 countries/territories. By using the 
cases detected outside China, they estimate 
the potential outbreak size in Wuhan and the 
basic production number. Similar to Chinazzi’s 
report, by using the cases detected in 
overseas, Imai et al.44 accorded to the traffic 
of Wuhan Interantion Airporte and estimate 
the basic reproduction number close to 
Chinazzi’s. 43 

Visions and Actions

The availability of large-scale and high-
resolution data from social and economic 
systems has provides a new way to improve 
urban spatial equity. For example, Louail et al. 
45 analyzed a database of card transactions 
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in two Spanish cities and then proposed a 
bottom-up approach to redistribute money 
flows for equality situations through redirecting 
a limited fraction of individual shopping trips. 
They constructed the “individual-business” 
bipartite spatial network, where the edges 
correspond to card transactions. Then, 
they performed the rewiring of individual 
transactions by redirecting them to the 
same business category located in different 
neighborhoods. The goal was to re-balance 
the commercial income among neighborhoods 
and with the preservation of human mobility 
properties. They found that reassigning only 
5% of individual transactions can reduce 
more than 80% spatial inequality between 
neighborhoods and can even improve other 
sustainability indicators like total distance 
traveled and spatial mixing. Their work 
illustrates an excellent implementation of 
crowdsourcing; the “Robin Hood effect”, a 
process through which capital is redistributed 
to reduce inequality.

Methods and data sources introduced in the 
Computational Socioeconomics can benefits 
the actions towards achieving SDGs and the 
evaluation of the progress. Specially, the 
above-mentioned novel perspective and 
methodology, driven by big data and artificial 
intelligence, will promisingly become the 
mainstream research framework in the action 
of SDGs.
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