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Abstract: 
Link prediction aims at revealing missing and unknown 

information from observed network data, or predicting 
possible evolutions in near future. In recent years, extensive 
studies of link prediction algorithms have been performed on 
unweighted networks. However most empirical systems are 
necessarily to be described as weighted networks rather than 
solely the topology. In this paper we extend the structural 
perturbation method to weighted networks. We found that by 
including weight information the prediction accuracy can be 
significantly improved on networks with homogeneous weight 
distributions, meanwhile less improvements for heterogeneous 
weighted networks. Also we compared the weighted structural 
perturbation method to some benchmark algorithms, both 
weighted and unweighted, and found generally better 
performance in accuracy. 
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1. Introduction

Networks are natural descriptions and abstractions of 
systems consisting with large amounts of interacting 
individuals [1]. Unweighted networks, which generally give 
the interaction relations of these individuals, are usually only 
partial descriptions of focal systems. Thus weighted 
networks are introduced to capture the strength of the 
interactions in addition to the topology [2]. The 
interpretations of link weights depend on specific networks. 
Typically, it can be interaction frequencies in social 
networks, or trophic factors in food webs. Empirically for 
many networks which have been studied yet, it can be 
understood as the interaction strength of a pair of nodes. 

Link prediction (LP) algorithms [3] are designed to find 
missing or unknown links in networks. LP algorithms can 
find rich applications in different scenarios. Examples 
include finding experimental errors in biological systems, or 
predicting latent future friendships in social networks, or 
revealing unaccessible hidden links in technical networks, to 
name just a few. 

In earlier studies, most LP algorithms focus on 
predicting missing links solely based on topology. In 
principle if further including the weight information, the 
prediction accuracies should be improved, or at least no 
worse. However how to incorporate the weight information 
into the algorithm properly is an unsolved problem and has 
attracted lots of attention in recent studies [4].  

In this paper we propose a LP algorithm based on 
structural perturbations of the weighted adjacency matrices 
[5]. Through extensive experiments we found that by 
including weights, the predicting accuracy can be 
significantly improved in networks with weights 
homogeneously distributed. However, for networks with 
heterogeneous weight distributions, the improvement is less 
apparent. Possible origins of this phenomenon are discussed 
in this paper. We also compare the weighted structural 
perturbation method (WSPM) to many other benchmark 
algorithms. In general, WSPM has superior performance or 
very close to the highest.  

2. Method

WSPM is based on matrix perturbation techniques, and 
is an extension of the unweighted version proposed in [5]. 
An observed weighted network can be described by an 
matrix , with the weight of link between nodes oW o

ijW i

and . For each , we define a new matrix  called the j oW

rescaled weight matrix with elements . )(~ o
ij

o
ij WgW 

Motivations for doing this rescaling also the explicit form of 
the function will be found in next section.  )(g

To generate predictions, we first divide into twooW~

independent parts with , where is thepuo WWW ~~~
 uW~

unperturbed matrix and the perturbation matrix. ForpW~

without degenerate eigenvalues, we perform theuW~

following matrix perturbation: 
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where and  are respectively the eigenvalues and the k kx

eigenvectors of , anduW~
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Then the matrix is applied for link prediction, with WSPMS
the score of the link between nodes and to exist. WSPM

ijS i j
We repeat the divide and perturbation procedure for 20 times 
and then use the average score for prediction.  The intuition 
behind this operation is that, the principle or mechanism of 
generating the missing links should in some sense consist 
with the perturbation links . Note that for networks withpW~

decimal link weights, usually the degeneracies of 
eigenvalues are broken, thus we do not discuss the 
perturbation of matrices with degenerate eigenvalues. The 
necessary details can be found in [5]. 

3. On the rescaling of link weights

As discussed before, the interpretation of link weights 
depends on specific networks. Weights of links usually have 
complex interplays with the function and structure of 
networks. Thus we do not have a simple linear way to relate 
the weights of networks and the likelihood for a pair of nodes 
to be connected. Consider social networks and suppose we 
try to measure the strength of social ties. Clearly one cannot 
simply assume that the strength is linearly proportional to the 
interactions frequencies between friends. But one reasonable 
assumption is that, the strength of friendship is a non-
decreasing function of the interaction frequencies. Thus to 
employ link weights to predict missing links, we need to do 
a proper rescaling. The rescaling function will change 
relative magnitudes of different link weights, but keeping the 
order of weights fixed. With the rescaling we wish to have 
the new weights that better fit our problem.  

In this paper we choose the power function for rescaling: 
.              (3)/1)(~

ijijij wwgW 

The reason for the choice is that the power function does not 
have a typical scale. Distributions of weights can be roughly 
divided into two categories, which are homogeneous and 
heterogeneous. Typical distributions of link weights are 
shown in Fig.1. For homogeneous weighted networks, the 
weights have a typical scale, while for heterogeneous 
weighted networks, the largest and smallest values of 
weights can differ in magnitudes. 

For other scaling functions like exponential function or 
sigmoid function, they do have a characteristic length scale. 

Thus they perform well in networks with homogeneous 
weight distributions. However, for heterogeneous networks, 
it’s unreasonable to assume a typical scale. The results of 
other rescaling function have been verified through extensive 
experiments, and they are not present in the paper.  

The rescaling function contains an undetermined 
parameter and it will be discussed in Section 5.  𝛼

Fig.1 The weight distributions of two typical networks. (a) 
Macaque [6-7]. The weight distribution has a typical scale. 
The straight line is a linear fit in linear-log plot. (b) US Air 
[14]. The weight distribution is scale free. The straight line 

is a linear fit in log-log scale. 

4. Results

To verify the performance of the algorithm, we divide a 
network into two parts, namely the training network W

and the probe network with . The oW pW po WWW 
cardinality of the probe network and the full network is 
related by with being a parameter controls WfW p  f

the size of the probe set. The training network is assumed to 
be the known data and the probe network is for testing the 
algorithm. The predicting accuracy is then measured by the 
Precision metric, which defined as the normalized overlap of 
the highest score links and probe network links. 

We perform the algorithm on seven networks, which are 
(1) Macaque [6-7], (2) Lesmis [8], (3) Highschool [7][9], (4) 
Residence [7][10], (5) Food Bay [11], (6) Food Mang [12] 
and (7) Neural [13]. The description of the networks can be 
found in the datasets and references therein.  

We also compare WSPM to three similarity based 
methods CN, AA, RA, as well as their weighted versions. 
The definitions of these algorithms are given as follows: 

,               (4) ),( yxCS CN
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Here,  is the set of common neighbors, the ),( yxC zk
degree of node and the node strength. z zW

The predicting accuracies measured by precision are 
shown in Fig.2. The size of the probe network varies from 
0.05 to 0.45 with 0.05 each step. To lighten the plots, we only 
show the accuracies of WSPM, SPM and the highest among 
all other six algorithms.  

As we can see, WSPM is of highest accuracy for all six 
networks other than Lesmis. And for Lesmis, the accuracy 
still is very close to the highest (RA). This reveal that WSPM 
can successfully predict missing links in weighted network.  

When comparing WSPM to SPM, we found that for the 
above four networks, the accuracy of WSPM is significantly 
improved. While for the below three networks, the 
accuracies are very close to SPM with only slight 
improvements, and the differences are smaller than the 
symbol size in the plot. A common feature of the above 
(below) networks is the weight distribution is homogeneous 
(heterogeneous), as shown in Fig.1(a) (Fig.1(b)).  

There might be two possible reasons for this 
phenomenon. The first is that the rescaling function has not 
incorporate the weight information properly for 
heterogeneously distributed networks. The second is that, for 
heterogeneously distributed networks, the weight provide 
less new information in addition to the topology. Since for 
heterogeneously weighted networks, weights of several 
important links dominates all other links, and for those high 
weights links, their importance might be over emphasized. 
We still haven’t got a definite answer to this question and 
leave it for future studies.  

5. Sensitivity to the rescaling parameter

Next we study the dependence of the predicting
accuracies on the rescaling parameter . We plot the 
precision versus the rescaling parameter in Fig.3. The blue 𝛼
line correspond to the precision with different rescaling 
parameters, red horizontal line the Precision of unweighted 

Fig.2 The predicting accuracy measured by precision for 
the seven networks. 

SPM and black vertical line the optimal value of . It can 
be seen that, for networks with homogeneous weight 
distributions, the optimal is usually a small positive 
constant. Also the performance around the optimal value is 
relatively close to optimal. Thus for homogeneously 
distributed weighted networks, a reasonable way of finding 
a good rescaling parameter is to do a liner search in a region 
like [14]. A possible quicker convergence method is to do a 
linear search with finer and finer search regions. Since the 
algorithm is not sensitive to around its optimal value, 
several steps of line search will result a reasonable value of 
the parameter. 

For networks with heterogeneous weight distributions, 
the optimal parameter is relatively of a larger value. This 
indicates that the rescaled weighted are necessarily to 
become more homogeneous compared to the original 
weights to make good predictions. Since when goes to 
infinity, the weights become identically equal to 1, and the 
WSPM reduces to the unweighted SPM. As discussed in 
Section 4, how to use the weight information in this case 
requires further studies. 

6. Conclusions

In the paper we proposed a LP algorithm for weighted
networks by using matrix perturbation techniques. The 
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Fig.3 The precision of WSPM versus the rescaling 
parameter for the seven networks.  

algorithm in general out performs six other methods, as well 
as the unweighted SPM method. Note that the WSPM 
method can also be applied to predict the weights of the links, 
or determine the existence and value of weights 
simultaneously.  

Still there’s one problem remaining to be solved when 
comparing the performance of WSPM and SPM. Under the 
current settings of weight rescaling, the improvement of 
predicting accuracy is much significant for homogeneous 
weighted networks. This is not the case for WCN, WAA, 
WRA compared to their corresponding unweighted version. 
One way to understand this is that, methods like CN are local 
information based methods, and weights does not essentially 
require a global rescaling. WSPM is based on the spectrum 
of networks, thus is a global method and require more 
reasonable pretreatment of the weights. How to incorporate 
link weights better for LP, especially for networks with 
heterogeneous weight distributions, demands further studies. 
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