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Long-Term Effects of Recommendation on the Evolution of Online Systems *
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We employ a bipartite network to describe an online commercial system. Instead of investigating accuracy and
diversity in each recommendation, we focus on studying the influence of recommendation on the evolution of
the online bipartite network. The analysis is based on two benchmark datasets and several well-known rec-
ommendation algorithms. The structure properties investigated include item degree heterogeneity, clustering
coefficient and degree correlation. This work highlights the importance of studying the effects and performance
of recommendation in long-term evolution.
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The digital revolution has brought to us the so-
called “information overload”: there is too much infor-
mation for online users to deal with. As a result, nowa-
days there is hardly an e-commerce website without
some form of information filtering or recommendation
service. Recommender systems seek to predict users’
non-considered preference typically through collabo-
rative or content-based filtering.[1−4] Researchers have
developed lots of methods to improve the effectiveness
of recommendation, such as matrix factorization,[5] re-
stricted Boltzmann machines,[6] social tags[7] and the
ensemble method.[8]

Online commercial systems can be well described
by bipartite networks[9] where users and items are rep-
resented by nodes, and an edge means that a user has
selected an item. In recent years, the network-based
recommendation methods became the focus in the lit-
erature. For example, the mass diffusion[10] and heat
conduction[11] are two personalized recommendation
algorithms based on the diffusion process on bipar-
tite networks. A hybrid algorithm of them is shown
to effectively solve the accuracy-diversity dilemma.[12]
The network manipulation method is also introduced
to improve the recommendation performance.[13]

Even studied intensively, most previous works con-
centrate on evaluating the performance of single rec-
ommendation based on training-probe set division.
It is not sure that a well-performed recommendation
method in a single step can enjoy high performance
in the long term. Some methods may make the online
network evolve to an unhealthy state. For example,
the whole market might be dominated by several su-
per popular items thus users only have limited choices.
On the other hand, items may have very even popular-
ity, which makes the quality of the objectives indistin-
guishable from the degree. Therefore, it is important
to study how different recommendation algorithms af-

fect the structure of an online network in long-term
evolution.

Fortunately, the tremendous wave of research on
complex networks[14−17] in the past decade provides
us with a powerful tool to uncover the structure prop-
erties and function of the bipartite network. Due
to the wide existence of the bipartite network in re-
ality, such as human sexual network[18] and collab-
oration network,[19] great effort has been made to
study its empirical analysis,[20] node strength con-
nectivity correlation,[21] projection into monopartite
network[22] and topology metrics.[23] In this Letter,
we investigate some topology measurements including
the heterogeneity of degree distribution, network clus-
tering and degree correlation. Some well-known rec-
ommendation algorithms are considered and the re-
sults show that they indeed have different effects on
the network evolution.

To begin our analysis, an online commercial sys-
tem is described by the user-item bipartite network.
Specifically, we consider a system of 𝑀 users and 𝑁
items represented by a bipartite network with adja-
cency matrix 𝐴, where the element 𝑎𝑖𝛼 = 1 if a user
𝑖 has collected an item 𝛼, and 𝑎𝑖𝛼 = 0 otherwise
(throughout this paper we use Greek and Latin let-
ters, respectively, for item- and user-related indices).

In this study, we use data with time informa-
tion from two online systems: Movielens (http:
//www.grouplens.org/) and Netflix (http://www.
netflixprize.com/). In both systems, users can rate
an item (movie) from 1 to 5. A higher rating indicates
that the user likes the item more. In order to obtain
a binary network, we consider that an edge exists be-
tween the two nodes only if a user rates an item higher
than 2. The descriptions of the two datasets are given
in Table 1.

We will briefly introduce several well-known rec-
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ommendation algorithms considered in this work:
popularity-based recommendation (PR), user-based
collaborative filtering (UCF),[1] item-based collabo-
rative filtering (ICF),[1] mass diffusion (MD)[10] and
heat conduction (HC).[11] Among these methods, PR
is the simplest one which recommends items to each
user based on item popularity. The recommendation
list is composed of the bestsellers which have no edge
with the target user before in descending order. The
other methods are personalized and recommend items
to each user based on his/her history records.
Table 1. Properties of the two datasets.

Dataset 𝑀 𝑁 Edge number Sparsity
Movielens 803 4231 119476 3.52×10−2

Netflix 2191 3316 160977 2.22×10−2
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Fig. 1. (Ccolor online) The log-log plots of cumulative
item degree distribution (𝑃 (𝑘)) after evolution in a real
and five artificial networks.

The collaborative filtering has become one of the
main approaches for recommendation in real online
systems and it provides recommendation based on
user or item similarities. The UCF algorithm follows
this process: First, the similarities between the target
user and the rest of the users are calculated. Then the
recommendation scores of uncollected items for user 𝑖
is calculated by

𝑃𝑖𝛼 =

𝑚∑︁
𝑗=1

𝑠(𝑖, 𝑗)𝑎𝑗𝛼,

where 𝑠(𝑖, 𝑗) denotes the similarity between user 𝑖 and
𝑗. Actually, the measure of similarity is subject to def-
inition. Here we use the Salton similarity measure.[4]
Denote Γ 𝑖 as the neighbor set of user 𝑖 and 𝑘𝑖 as the
degree of 𝑖, and the Salton index can be expressed as

𝑠(𝑖, 𝑗) =
|Γ𝑖 ∩ Γ𝑗 |√︀

𝑘𝑖𝑘𝑗
.

The resulting recommendation list of uncollected
items for the target user 𝑖 is then sorted according
to 𝑃𝑖𝛼 in descending order.

Instead of considering users’ similarities, ICF is
based on the similarities between items. The recom-
mendation scores can be written as

𝑃𝑖𝛼 =

𝑛∑︁
𝛽=1

𝑠(𝛼, 𝛽)𝑎𝑖𝛽 .

Like UCF, the similarities here between items are cal-
culated based on the Salton index.
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Fig. 2. (Color online) Evolution of item degree hetero-
geneity (𝐻) when different recommendation methods are
implemented in real systems.

The MD and HC algorithms work similarly by as-
signing one unit of resource to each item selected by
the target user, but reallocating the resource through
the user-item bipartite network in two different ways.
The final resource that item 𝛼 received from the target
user 𝑖 can be computed by

𝑃𝑖𝛼 =

𝑛∑︁
𝛽=1

𝑤𝛼𝛽𝑎𝑖𝛽 ,

where 𝑤𝛼𝛽 is an element of the resource redistribu-
tion matrix 𝑊 . Finally, the recommendation list will
be generated by sorting the resource of the items in
descending order. The difference between MD and
HC lies in the definition of 𝑊 . In MD, each item dis-
tributes its resource equally to its neighboring users.
Next, each user redistributes his/her resource equally
back to the neighboring items. Mathematically, the
redistribution matrix of MD is

𝑤𝛼𝛽 =
1

𝑘𝛽

𝑚∑︁
𝑙=1

𝑎𝑙𝛼𝑎𝑙𝛽
𝑘𝑙

.

The HC method also has two steps. In the first step,
users receive the average resource from the neighbor-
ing items. Then the resource goes back to items in the
same way (i.e., each item obtains the average resource
of its neighboring users). The resource redistribution
matrix reads

𝑤𝛼𝛽 =
1

𝑘𝛼

𝑚∑︁
𝑙=1

𝑎𝑙𝛼𝑎𝑙𝛽
𝑘𝑙

.

In order to investigate how recommendation affects
the structure properties of the user-item network, we
design the following network evolution scenario. The
edges of real data are sorted in order of time. The ini-
tial network consists of the first half of the edges. The
subsequent edges are equally divided into five subsets
according to time. The edges in each subset will be
added to the network in one macro-step by the recom-
mendation algorithms. In each macro-step, a recom-
mendation list is generated for each user. The num-
ber of edges for each user to be added is determined
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by the degree increase of the real data in the corre-
sponding macro-step. For simplicity, we assume that
users would accept recommendation by selecting the
item with the highest recommendation score, result-
ing in a deterministic evolution of the network. We
perform only one realization of network evolution for
each recommendation method. Note that after each
macro-step, a new recommendation list for each user
will be generated based on the new user-item network.
Therefore, the recommendation has a cumulative ef-
fect on the network evolution. User degree after each
macro-step will be exactly the same as that in real
data. However, item degree and connection between
users and items will be different from the real case due
to the effects of recommendation. As discussed above,
five recommendation algorithms will be studied. We
will compare the evolution of their resulting artificial
networks to the real network (i.e. the case where the
edges are added simply based on real data). We do
not consider the growth of the system size here since
introducing new users or items may involve the cold-
start problem.

One of the basic topology properties of a com-
plex network is the degree distribution 𝑝(𝑘). Fig-
ure 1 shows the cumulative item degree distribution
𝑃 (𝑘) after five macro-steps of evolution. In both sys-
tems, the cumulative item degree distributions of real
data follow the stretched exponential distributions.[20]
Clearly, all the recommendation algorithms signifi-
cantly change the degree distributions of the real sys-
tems. To quantify the effects of different recommenda-
tion on the item degree distribution over time, we cal-
culate the item degree heterogeneity as 𝐻 = ⟨𝑘2⟩

⟨𝑘⟩2 .[24]

The greater the item degree heterogeneity is, the more
the uneven items’ degrees are. Actually, the degree
heterogeneity is a measure of the global diversity of
the online systems. If online retail systems have low
global diversity, only several of the most popular items
survive and monopolize the markets. On the other
hand, with a large global diversity, the popularity is
distributed on a large space of items which is gener-
ally beneficial compared to a limited space spanned by
only the popular items. Figure 2 shows the compari-
son of the resulting 𝐻 index from different methods as
a function of macro-steps. The curves of PR, UCF and
MD overlap with each other and achieve the highest
𝐻, indicating that they all tend to recommend pop-
ular items. Interestingly, even though UCF and MD
are claimed to be personalized, their effects on item
degree distribution are more or less the same as the
non-personalized PR method. On the other hand, the
other two methods recommend items with smaller de-
gree instead. The 𝐻 from HC is even smaller than
that from ICF.

Actually, items’ recommendation scores from dif-
ferent recommendation algorithms have been analyt-
ically calculated based on the mean-field method.[25]
The results show that items’ recommendation scores

from MD and UCF are proportional to the degrees
of the items. Items’ recommendation scores from HC
are independent of their degrees. For ICF, the solution
of items’ recommendation scores strongly depends on
the definition of items’ similarity measure. Therefore,
we observe that the results of MD and UCF are very
similar to the PR method. HC leads to relatively ho-
mogenous item degree distribution. The results of ICF
are between those of PR and HC.

Though the recommendation scores from some al-
gorithms are proportional to items’ degrees, they can-
not reproduce the features of real networks as the clas-
sic preferential attachment does. This is because the
recommendation system cannot present each user with
the whole recommendation list. Since only the top 𝐿
(𝐿 = 1 in our case) items will be shown to the users,
the items in the bottom of the list cannot receive any
links. This mechanism makes several items (which
frequently appear in most users’ top 𝐿 lists) attract
most of the links, resulting in a more heterogeneous
item degree distribution than the real data.
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Fig. 3. (Color online) Evolution of number of squares
(NoS) when different recommendation methods are im-
plemented in real systems.
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Fig. 4. (Color online) Evolution of clustering coefficient
(CC) when different recommendation methods are imple-
mented in real systems.

It is found that the personalized recommenda-
tion mainly relies on the square motifs of the bipar-
tite networks.[22] Here we adopt both the number of
squares (NoS) and clustering coefficient (CC) to mon-
itor the network evolution. In a bipartite network, the
clustering coefficient for a node 𝑖 is calculated by divid-
ing the number of squares (the smallest clique in the
bipartite network) passing through 𝑖 by the number of
𝑖’s all possible squares.[23] The value of CC varies from
0 to 1 and a high value indicates a strong local con-
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nection. Figure 3 shows the evolution of the NoS in
different networks where NoS increases exponentially
in the real system and all the recommendation algo-
rithms result in a higher NoS than the real data. It
is reasonable since almost all these methods are based
on the square motif to realize personal recommenda-
tion. Among these algorithms, NoS of HC increases
most slowly and other methods are having almost the
same effects as PR. As for the clustering coefficient in
Fig. 4, most of the methods result in a bigger CC than
the real data, just like the case of NoS. It is interesting
that even though NoS of HC is the lowest, its CC is
the highest among all these artificial networks. The
reason is that HC tends to recommend novel items,
which significantly strengthens the local connectivity
of small degree items. There are many such small de-
gree items, so the final clustering coefficient for the
whole system is largely increased.

0 10 20 30 40
0

40

80

120

160

0 5 10 15 20 25 30
0

100

200

300

400

500

600
 Real
 PR
 UCF
 ICF
 MD
 HC

Movielens

 

Netflix

Fig. 5. (Color online) Degree of correlation between users
and items after evolution in real and artificial networks.
For a given item degree 𝑘, its corresponding 𝑑(𝑘) is ob-
tained by averaging over all the users whose degrees are
in the range of [𝑎(𝑘2 − 𝑘), 𝑎(𝑘2 + 𝑘)], where 𝑎 is chosen as
1
2
log 5 for a better illustration.

It has been pointed out that the negative degree
correlation between users and their selected items is an
important feature of an online commercial system.[20]
We investigate whether such a feature is significantly
influenced by different recommendation methods in
the long term. For a given user 𝑖, we obtain the av-
erage degree of the items selected by him/her as 𝑑𝑖.
To see a clear trend, we average 𝑑𝑖 over all the users
with the same degree 𝑘𝑖 (denoted as 𝑑(𝑘)). Figure 5
shows the relation between 𝑑(𝑘) and user degree 𝑘 in
different networks after evolution. Both real systems
exhibit negative correlations. Generally, inactive users
with low degree have not much experience in explor-
ing new items so they are more likely to select popu-
lar items while active users are inclined to try novel
items, thus both the networks are disassortative mix-
ing. Almost all the recommendation methods enhance
the negative correlation. Actually, this effect mainly
comes from the small degree users. With a limited
number of edges, they only provide the recommen-
dation algorithms with limited information so recom-
mender systems can only find a few relevant items for
them and the large degree items are generally easier

to find (reached by diffusion). Consequently, 𝑑’s of
these small degree users increase after recommenda-
tion. Results of HC are the closest to the real case
and the curves of PR, UCF, MD overlap just like the
𝐻 and CC cases.

In summary, we have studied the long-term effects
of different recommendation algorithms on the evolu-
tion of online commercial systems. We design a bipar-
tite network evolution scenario by assuming that users
always accept recommendation (to see the pure effects
of recommendation on the topology changes). We
study several structure indices including the degree
heterogeneity, clustering coefficient and degree corre-
lation. We find that the recommendation algorithms
have reinforcing effects on these indices. Generally,
the degree heterogeneity and clustering coefficient are
increased in the long term. Moreover, the recommen-
dation algorithms result in a stronger negative degree
correlation between users and items. Though claimed
to be personalized, the MD and UCF algorithms have
almost the same effects on network topology as the
non-personalized popularity-based method. Among
the algorithms we considered, the HC is a special one.
Since it is inclined to recommend novel items, its re-
inforcing effects are the weakest.

Actually, we examined the accuracy of each recom-
mendation method after long-term network evolution.
The results show that the recommendation accuracy
decreases in the long term if all users entirely rely on
the recommendation to select items. We remark that
it is interesting to investigate the possible combina-
tions to optimize the network evolution for long-term
accuracy, which asks for research in the future.
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